• Title/Summary/Keyword: digital hologram

Search Result 237, Processing Time 0.036 seconds

Hologram Watermarking Using Fresnel Diffraction Model (Fresnel 회절 모델을 이용한 홀로그램 워터마킹)

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.606-615
    • /
    • 2014
  • This paper is to propose an algorithm for digital hologram watermarking by using a characteristic of the Fresnel diffraction model in 2D image. When 2D image is applied Fresnel transform, the result concentrates center region. When applied to a hologram, on the other hand, the result focused diffraction pattern of 2D form. Using this characteristic, to generate diffraction model by applying 2-th Fresnel transform to the hologram. Corner of diffraction model is mark space. This mark space is embedded watermark and extracted watermark. Experimental results showed that all the extracted watermarks after several kinds of attacks (Gaussian blurring, Sharpening, JPEG compression) showed visibilities good enough to be recognized to insist the ownership of the hologram.

A New Parallelizing Algorithm and Cell-based Hardware Architecture for High-speed Generation of Digital Hologram (디지털 홀로그램의 고속 생성을 위한 병렬화 알고리즘 및 셀 기반의 하드웨어 구조)

  • Seo, Young-Ho;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.54-63
    • /
    • 2011
  • This paper proposes a new equation to calculate computer-generated hologram (CGH) in a high speed and its cell-based VLSI (veri large scale integrated circuit) architecture. After finding the calculational regularity in the horizontal or vertical direction from the basic CGH equation, we induce the new equation to calculate the horizontal or vertical hologram pixel values in parallel. We also propose the architecture of the CGH cell consisting of a initial parameter calculator and update-phase calculator(s) on the basis of the equation and implement them in hardware. Also we show a hardware architecture to parallelize the calculation in the horizontal direction by extending CGH. In the experiments we analyze the used hardware resources. These analyses makes it possible to select the amount of hardware to the precision of the results. Here, for the CGH kernel and the structure of the processor, we used the platform from our previous works.

Distortion Compensation of Reconstructed Hologram Image in Digital Holographic Display Based on Viewing Window

  • Park, Minsik;Kim, Hyun-Eui;Choo, Hyon-Gon;Kim, Jinwoong;Park, Cheong Hee
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.480-492
    • /
    • 2017
  • A holographic display based on a viewing window enables the converging of a reconstruction wave into a viewing window by means of an optical system. Accordingly, a user can observe a reconstructed hologram image, even with a small diffraction angle. It is very difficult to manufacture an optical system with no aberrations; thus, it is inevitable that a certain amount of wave aberrations will exist. A viewing-window-based holographic display, therefore, always includes distortions in an image reconstructed from a hologram pattern. Compensating the distortions of a reconstructed image is a very important technical issue because it can dramatically improve the performance when reconstructing a digital three-dimensional content image from a hologram pattern. We therefore propose a method for suppressing image distortion by measuring and compensating the wave aberration calculated from a Zernike polynomial, which can represent arbitrary wave aberrations. Through our experimental configuration using only numerical calculations, our proposed method decreased the reconstructed image distortion by more than 28%.

Character Floating Hologram using Detection of User's Height and Motion by Depth Image (깊이 영상으로 사용자 키 검출 및 동작감지를 사용한 캐릭터 플로팅 홀로그램)

  • Oh, KyooJin;Han, DaeHyun;Kwon, SoonKak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.33-40
    • /
    • 2018
  • With the development of computer and video technology, a lot of contents are being produced as digital media methods to provide are being diversified and the intrest in digital media increases. Such contents are actively researched using human motion and user's information through camera or controller. Contents using user's information can be exposed to various people in public places and used as an advertisement. This paper proposes the character floating hologram system that is implemented using detection of user's height and motion. The purposed system detects user's height and motion from depth images and creates corresponding character from the detected data. Then it is represented using a floating hologram device. This system can be used for marketing, advertising and exhibition events using user information.

Dual Optical Encryption for Binary Data and Secret Key Using Phase-shifting Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.263-269
    • /
    • 2012
  • In this paper, we propose a new dual optical encryption method for binary data and secret key based on 2-step phase-shifting digital holography for a cryptographic system. Schematically, the proposed optical setup contains two Mach-Zehnder type interferometers. The inner interferometer is used for encrypting the secret key with the common key, while the outer interferometer is used for encrypting the binary data with the same secret key. 2-step phase-shifting digital holograms, which result in the encrypted data, are acquired by moving the PZT mirror with phase step of 0 or ${\pi}/2$ in the reference beam path of the Mach-Zehnder type interferometer. The digital hologram with the encrypted information is a Fourier transform hologram and is recorded on CCD with 256 gray level quantized intensities. Computer experiments show the results to be encryption and decryption carried out with the proposed method. The decryption of binary secret key image and data image is performed successfully.

Automatic Visualization for Heterogeneous Hologram-Like Systems (이기종 유사홀로그램 시스템 간 콘텐츠 자동 가시화 기법)

  • Kim, Ju-Hwan;Jo, DongSik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1445-1450
    • /
    • 2020
  • Recently, a hologram-like system to provide a realistic experience has been serviced in performances, exhibitions, education. The constructing method for the hologram-like system can be configured in various forms such as a pyramid-typed, a semi-transparent large screen form. However, in various types of hologram-like systems, it is difficult to provide adjustment by changing and revising the content according to the configured hardware characteristics. In this paper, we propose a novel technique that can automatically visualize virtual contents running on heterogeneous hologram-like systems. To change the content to a given hardware configuration, we receive pre-built simple text-based configuration data, and correcting process was performed. According to the results of this paper, we found automatically and easily corrected visualization with the given configuration of the hologram-like system. Also, the problem of reducing the time by manual control in various types of heterogeneous hologram systems was solved.

Digital Hologram Encryption Algorithm using Fresnel Diffraction (프레넬 회절을 이용한 디지털 홀로그램 암호화 알고리즘)

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.807-817
    • /
    • 2015
  • This paper is to propose an encryption method for only an allowed user to see the content for a digital hologram, that is a high value-added content. This paper uses a characteristic of Fresnel transform that the object region is concentrated to a relatively small part of the diffraction plane. By encrypting the concentrated part only the region to be encrypted and in turn the amount of data to be encrypted is reduced a lot, which results in an high efficiency with low encryption rate. As the methodology, a digital hologram is first Fresnel transformed for reconstruction and the result is secondly Fresnel transformed to concentrate the energy into the center of the diffraction plane to encrypt the concentrated region only. For the 2nd transform, energy concentration degree is determined by adjusting the diffraction distance and encryption strength is determined by adjusting the scaling factor. For this we analyze the optimal encryption area according to the diffraction distance and the scaling factor. When applying the proposed method with diffraction distance of 20m the object information was visually unrecognizable with the encryption ratio only 0.005% ~ 0.02%.

A New System Implementation for Generating Holographic Video using Natural Color Scene (실사 컬러 영상을 이용한 홀로그램 비디오 생성 시스템 구현)

  • Seo, Youngho;Lee, Yoon-Hyuk;Koo, Ja-Myung;Kim, Woo-Youl;Kim, Bo-Ra;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.149-158
    • /
    • 2013
  • In this paper, we propose a new system which can generate digital holograms for natural color scene. The system consists of both a camera system for capturing images and softwares(SWs) for various image processings. The camera system uses a vertical rig with a depth and a RGB camera and a cold mirror which has the different transmittance according to wavelength for obtaining images with the same view point. The S/W is composed by the engines for processing and servicing the captured images and computer-generated hologram (CGH) for generating digital holograms using general-purpose computing on graphics processing unit (GPGPU). Each algorithm was implemented using C/C++ and CUDA languages, and all engines were integrated in LabView environment. The proposed system can generate 10 digital holographic frames per second using about 6K light sources.

Design of Fresnelet Transform based on Wavelet function for Efficient Analysis of Digital Hologram (디지털 홀로그램의 효율적인 분해를 위한 웨이블릿 함수 기반 프레넬릿 변환의 설계)

  • Seo, Young-Ho;Kim, Jin-Kyum;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In this paper, we propose a Fresnel transform method using various wavelet functions to efficiently decompose digital holograms. After implementing the proposed wavelet function-based Fresnelet transforms, we apply it to the digital hologram and analyze the energy characteristics of the coefficients. The implemented wavelet transform-based Fresnelet transform is well suited for reconstructing and processing holograms which are optically obtained or generated by computer-generated hologram technique. After analyzing the characteristics of the spline function, we discuss wavelet multiresolution analysis method based on it. Through this process, we proposed a transform tool that can effectively decompose fringe patterns generated by optical interference phenomena. We implement Fresnelet transform based on wavelet function with various decomposition properties and show the results of decomposing fringe pattern using it. The results show that the energy distribution of the coefficients is significantly different depending on whether the random phase is included or not.

Hologram Compression Technique using Motion Compensated Temporal Filtering (움직임보상 시간적 필터링을 이용한 홀로그램 압축 기법)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1296-1302
    • /
    • 2009
  • We propose an efficient coding method of digital holograms using MCTF and standard compression tools for video. The hologram is generated by a computer-generated hologram (CGH) algorithm with both an object image and its depth information. The proposed coding consists of localization by segmenting a hologram, frequency transform using $64\times64$ segment size, 2-D discrete cosine transform DCT for extracting redundancy, motion compensated temporal filtering (MCTF), segment scanning the segmented hologram to form a video sequence, and video coding, which uses H.264/AVC. The proposed algorithm illustrates that it has better properties for reconstruction, 10% higher compression rate than previous research in case of object.