• Title/Summary/Keyword: digital hologram

Search Result 237, Processing Time 0.029 seconds

Hardware Architecture of High Performance Cipher for Security of Digital Hologram (디지털 홀로그램의 보안을 위한 고성능 암호화기의 하드웨어 구조)

  • Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.374-387
    • /
    • 2012
  • In this paper, we implement a new hardware for finding the significant coefficients of a digital hologram and ciphering them using discrete wavelet packet transform (DWPT). Discrete wavelet transform (DWT) and packetization of subbands is used, and the adopted ciphering technique can encrypt the subbands with various robustness based on the level of the wavelet transform and the threshold of subband energy. The hologram encryption consists of two parts; the first is to process DWPT, and the second is to encrypt the coefficients. We propose a lifting based hardware architecture for fast DWPT and block ciphering system with multi-mode for the various types of encryption. The unit cell which calculates the repeated arithmetic with the same structure is proposed and then it is expanded to the lifting kernel hardware. The block ciphering system is configured with three block cipher, AES, SEED and 3DES and encrypt and decrypt data with minimal latency time(minimum 128 clocks, maximum 256 clock) in real time. The information of a digital hologram can be hided by encrypting 0.032% data of all. The implemented hardware used about 200K gates in $0.25{\mu}m$ CMOS library and was stably operated with 165MHz clock frequency in timing simulation.

Digital Hologram Compression Technique By Hybrid Video Coding (하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kang, Hoon-Jong;Lee, Seung-Hyun;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.29-40
    • /
    • 2005
  • According as base of digital hologram has been magnified, discussion of compression technology is expected as a international standard which defines the compression technique of 3D image and video has been progressed in form of 3DAV which is a part of MPEG. As we can identify in case of 3DAV, the coding technique has high possibility to be formed into the hybrid type which is a merged, refined, or mixid with the various previous technique. Therefore, we wish to present the relationship between various image/video coding techniques and digital hologram In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video and image. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. Finally the proposed hybrid compression algorithm is all of these methods. The tool for still image coding is JPEG2000, and the toots for video coding include various international compression algorithm such as MPEG-2, MPEG-4, and H.264 and various lossless compression algorithm. The proposed algorithm illustrated that it have better properties for reconstruction than the previous researches on far greater compression rate above from four times to eight times as much. Therefore we expect that the proposed technique for digital hologram coding is to be a good preceding research.

An Iterative Digital Image Watermarking Technique using Encrypted Binary Phase Computer Generated Hologram in the DCT Domain (DCT 영역에서 암호화된 이진 위상 컴퓨터형성 홀로그램을 이용한 반복적 디지털 영상 워터마킹 기술)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we proposed an iterative digital image watermarking technique using encrypted binary phase computer generated hologram in the discrete cosine transform(OCT) domain. For the embedding process of watermark, using simulated annealing algorithm, we would generate a binary phase computer generated hologram(BPCGH) which can reconstruct hidden image perfectly instead of hidden image and repeat the hologram and encrypt it through the XOR operation with key image that is ramdomly generated binary phase components. We multiply the encrypted watermark by the weight function and embed it into the DC coefficients in the DCT domain of host image and an inverse DCT is performed. For the extracting process of watermark, we compare the DC coefficients of watermarked image and original host image in the DCT domain and dividing it by the weight function and decrypt it using XOR operation with key image. And we recover the hidden image by inverse Fourier transforming the decrypted watermark. Finally, we compute the correlation between the original hidden image and recovered hidden image to determine if a watermark exits in the host image. The proposed watermarking technique use the hologram information of hidden image which consist of binary values and encryption technique so it is very secure and robust to the external attacks such as compression, noises and cropping. We confirmed the advantages of the proposed watermarking technique through the computer simulations.

Digital Hologram Compression Technique using Multi-View Prediction based on Image Accumulation (영상집적 기반의 다시점 부호화 기술을 이용한 디지털 홀로그램의 압축 기술)

  • Choi, Hyun-Jun;Seo, Young-Ho;Bae, Jin-Woo;Yoo, Ji-Sang;Kim, Hwa-Sung;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.933-941
    • /
    • 2006
  • In this paper, we proposed an efficient coding method for digital hologram (fringe pattern) acquired by a CCD camera or by computer generation using multi-view prediction technique and MPEG video compression standard technique. It proceeds each R, G, or B color component separately. The basic processing unit is a partial image segmented into the size of $N{\times}N$. Each partial image retains the information of the whole object. This method generates an assembled image for a row of the segmented and frequency-transformed partial images, which is the basis of the coding process. That is, a motion estimation and compensation technique of MPEG is applif:d to the reconstructed images from the assembled images with the disparities found during generation of assembled image and the original partial images. Therefore the compressed results are the disparity of eachpartial image to form the assembled image for the corresponding row, assembled image, and the motion vectors and the compensated image for each partial image. The experimental results with the implemented algorithm showed that the proposed method has NC (Normal Correlation) values about 4% higher than the previous method, by which ours has better compression efficiency. Consequently, the Proposed method is expected to be used effectively in the application areas to transmit the digital hologram data. can be identified in comparison with the previous researches and commercial IPs.

Defect Inspection of Phase Shift Photo-Mask with Digital Hologram Microscope (디지털 홀로그램 현미경을 이용한 위상차 포토마스크 결함 측정)

  • Cho, Hyung-Jun;Lim, Jin-Woong;Kim, Doo-Cheol;Yu, Young-Hun;Shin, Sang-Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.303-308
    • /
    • 2007
  • We report here on the application of a digital holographic microscope as a metrology tool for the inspection and the micro-topography reconstruction of different micro-structures of phase shift photo-mask (PSM). The lithography by phase shift photo-mask uses the interference and the pattern of the PSM is not imaged by general optical microscope. The technique allows us to obtain digitally a high-fidelity surface topography description of the phase shift photo-mask with only one hologram image acquisition, allowing us to have relatively simple and compact set-ups able to give quantitative information of PSM.

Three-key Triple Data Encryption Algorithm of a Cryptosystem Based on Phase-shifting Interferometry

  • Seok Hee Jeon;Sang Keun Gil
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.673-682
    • /
    • 2023
  • In this paper, a three-key triple data encryption algorithm (TDEA) of a digital cryptosystem based on phase-shifting interferometry is proposed. The encryption for plaintext and the decryption for the ciphertext of a complex digital hologram are performed by three independent keys called a wavelength key k1(λ), a reference distance key k2(dr) and a holographic encryption key k3(x, y), which are represented in the reference beam path of phase-shifting interferometry. The results of numerical simulations show that the minimum wavelength spacing between the neighboring independent wavelength keys is about δλ = 0.007 nm, and the minimum distance between the neighboring reference distance keys is about δdr = 50 nm. For the proposed three-key TDEA, choosing the deviation of the key k1(λ) as δλ = 0.4 nm and the deviation of the key k2(dr) as δdr = 500 nm allows the number of independent keys k1(λ) and k2(dr) to be calculated as N(k1) = 80 for a range of 1,530-1,562 nm and N(dr) = 20,000 for a range of 35-45 mm, respectively. The proposed method provides the feasibility of independent keys with many degrees of freedom, and then these flexible independent keys can provide the cryptosystem with very high security.

Recent Technology of 3D Content for Digital Holography (디지털 홀로그래피 콘텐츠 기술)

  • Yoon, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.5
    • /
    • pp.49-64
    • /
    • 2017
  • Digital holography is a computational operation and photo-electronic technology that enables calculating, encoding, and reconstructing a 3D scene based on the interference of a coherent light-wave field. The spatial light modulator in a holographic 3D display decodes a computer-generated hologram to optically regenerate a 3D scene in various depths, thus facilitating to match convergence and accommodation of the human eyes. This paper introduces recent technologies related with the content for digital holography called an ultimate 3D display.

Holographic Forensic Mark based on DWT-SVD for Tracing of the Multilevel Distribution (다단계 유통 추적을 위한 DWT-SVD 기반의 홀로그래피 포렌식마크)

  • Li, De;Kim, Jong-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.155-160
    • /
    • 2010
  • In this paper, we proposed a forensic mark algorithm which can embed the distributor's information at each distribution step to trace the illegal distribution path. For this purpose, the algorithm has to have the high capacity payload for embedding the copyright and user information at each step, and the embedded information at a step should not interfere with the information at other step. The proposed algorithm can trace the multilevel distribution because the forensic mark is generated by digital hologram and embedded in the DWT-SVD domain. For the high capacity embedding, the off-axis hologram is generated from the forensic mark and the hologram is embedded in the HL, LH, HH bands of the DWT to reduce the signal interference. The SVD which is applied the holographic signal enhanced the detection performance and the safety of the forensic mark algorithm. As the test results, this algorithm was able to embed 128bits information for the copyright and user information at each step. In this paper, we can embed total 384bits information for 3 steps and the algorithm is also robust to the JPEG compression.

Realistic Enhancement of 3D Expressions for Building Expressions with Hologram (건축물 홀로그램 표현에서 3D 실체감 표현 향상방안)

  • Shin, Seong-Yoon;Lee, Hyun-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1104-1109
    • /
    • 2019
  • Business utilization of holograms is widely used as a similar hologram. The use of holograms has been proposed in many cases. In this paper, we present an outline of similar holograms using up to 3 or 4 facets, and express the similar holograms using the results produced by 3D modeling for a building from dealing with the representation of buildings from hololens to pseudo-hologram by using 3D modeling results. In addition, to reflect the real image of the disadvantage of modeling, we propose a method to enhance the 3D expression of the object by reflecting the actual building surface on the 3D model through photographing. Virtual building seen by the human eye can be virtually shown in space through a hologram among various methods shown in a virtual space such as AR / VR / MR. Through this study, it will be possible to express holograms of various materials such as buildings or cultural properties with enhanced realism.

Digital Image Watermarking Technique using Scrambled Binary Phase Computer Generated Hologram in Discrete Cosine Transform Domain (DCT영역에서 스크램블된 이진 위상 컴퓨터형성홀로그램을 이용한 디지털 영상 워터마킹 기술)

  • Kim, Cheol-Su
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.403-413
    • /
    • 2011
  • In this paper, we proposed a digital image watermarking technique using scrambled binary phase computer generated hologram in the discrete cosine transform(DCT) domain. For the embedding process of watermark. Using simulated annealing algorithm, we would generate a binary phase computer generated hologram(BPCGH) which can reconstruct hidden image perfectly instead of hidden image and encrypt it through the scramble operation. We multiply the encrypted watermark by the weight function and embed it into the DC coefficients in the DCT domain of host image and an inverse DCT is performed. For the extracting process of watermark, we compare the DC coefficients of watermarked image and original host image in the DCT domain and dividing it by the weight function and decrypt it using descramble operation. And we recover the hidden image by inverse Fourier transforming the decrypted watermark. Finally, we compute the correlation between the original hidden image and recovered hidden image to determine if a watermark exits in the host image. The proposed watermarking technique use the hologram information of hidden image which consist of binary values and scramble encryption technique so it is very secure and robust to the various external attacks such as compression, noises and cropping. We confirmed the advantages of the proposed watermarking technique through the computer simulations.