• 제목/요약/키워드: digital PID control

검색결과 174건 처리시간 0.031초

Two-Drum Winder 권취 공정 시스템에서의 적용 PID 제어기를 이용한 장력제어 (Tension Control Using Adaptive PID Controller in the Two-Drum Winder Web Transport System)

  • 최승규;이동빈;임화영
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.813-821
    • /
    • 2000
  • In this paper, we developed modeling of tension and speed dynamics for a two-drum winder in a three span continuous web transport system which had not been previously. Dynamic modeling of the time-varying nonlinear system was derived by considering the effect of the radii and mass moment of inertia in the unwinder and the two-drum winder through winding up the web. After linearizing it, we designed with a variable-gain a PID controller for tension control and a PI controller for speed. Simulation is carried out with the variation of radii and moment of inertia at high speed for the proposed tension control system with the two-drum winder and the variavle-gain a PID controller. Results show good performance of tension control during the speed change speed at a start-up and stop.

  • PDF

비례 모듈레이터 특성 (Experimental Characteristics of the Electro-Pneumatic Proportional Modulator)

  • 윤소남;최병오;김찬용;박평원;이경우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1784-1787
    • /
    • 2005
  • In this paper, proportional modulator which controls the second pressure of the pneumatic system was studied and proportional operating of modulator was gotten by two digital valves that have a fast dynamic characteristics and were controlled by PWM operating method. In order to more precision pressure control, this modulator consist of not only high speed two digital valves but also pressure sensor, measurement equipment and controller having a microprocessing function. In this study, for the development of the new proportional modulator, various research such as PWM control method, test equipment manufacturing, testing and evaluation were accomplished.

  • PDF

전기.유압 속도제어 시스템의 디지탈 적용제어에 관한 연구 (Digital adaptive control of electro hydraulic velocity control system)

  • 장효환;전윤식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.321-325
    • /
    • 1988
  • The objective of this study is to develop a microcomputer-based adaptive controller for an electro hydraulic velocity control system subjected to the variation of system parameters. The step response performance of the system with the adaptive controller is investigated for the variation of the external load torque, the moment of inertia and the reference inputs, and compared with that obtained by PID controller whose gains are constant. The experimental results show that this proposed model reference adaptive controller is robust to the variation of system parameters and yield much better control performance compared with the conventionel PID controller.

  • PDF

비선형 슬라이딩 면을 이용한 온수난방 순환펌프 시스템의 온도 제어 (Temperature control for a hot water heating circulating pump system using a nonlinear sliding surface)

  • 안병천;장효환
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.162-168
    • /
    • 1997
  • Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.

  • PDF

$H_{\infty}$ 제어기법을 이용한 저속디젤기관의 속도제어 (Speed Control of the Low Speed Diesel Engine by $H_{\infty}$ Controller Design Method)

  • 양주호;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권5호
    • /
    • pp.63-70
    • /
    • 1993
  • In 1980's to 1990's the marine propulsion diesel engines have been developed into lower speed and longer stroke for the energy saving(small S.F.O.C.). As these new trends the convetional mechnical-hydraulic governors were not adapted to the new requirements and the digital governors have been adopted in the marine use. The digital governors usually use the control algorithms such as the PID control, optimal control, adaptive control and etc. While the engine has delay time and parameter variations these control algorithms have difficulty in considering the stability and the robustness for the model uncertainty. In this study, the $H_{\infty}$ controller design method are applied to the speed control of the low speed marine diesel engine. By comparison the $H_{\infty}$ control results with the PID control results, the validity of the $H_{\infty}$ controller under the delay time and parameter variations is confirmed.

  • PDF

Digital control of active magnetic bearing using digital signal processor

  • Shimomachi, T.;Ishimatsu, T.;Taguchi, N.;Fukata, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.760-765
    • /
    • 1989
  • Digital control laws are implemented on an active magnetic bearing system with DSP. The results of tests using a experimental apparatus are (1) in a case that conventional PID, PIDD2 controls are employed, implemention of digital control law has similar characteristics to that of analogue control law. (2)The experiments reveal the results that the dynamic compensation based on the observer may be better than that of the other conventional controllers.

  • PDF

One-board micom을 이용한 정밀 온도 제어 시스템 (A precision temperature control system using one-board micom)

  • 주해호;조덕현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.457-461
    • /
    • 1988
  • In this study an one-board micom controlled precision temperature control system has been developed. The digital temperature control system is consisted of an one-board micom as digital controller, a 12-bit A/D and D/A converter, a power amplifier, a NTC thermister, a preamplfier and a heat chamber. An operating control program for the control system was written in Z80 machine language. A Dual-PID predictor control algorithm was proposed. Experments were conducted with different sampling time and limitted error value. As a result, the temperature in a heat chamber can be well controlled within +- 0.2 .deg.C when the sampling time was applied to 10 sec and the limitted error value +- 0.5 .deg.C under the dual-PID predictor control algorithm. By means of one-board micom overall system has been reduced in size and volume, thus the system becomes compact and less expensive.

  • PDF

AVR의 응답속도개선을 위한 제어기법에 관한 연구 (Control techniques for improving response of the AVR)

  • 이형기;김송현;김현수;김기량;김관형
    • 한국정보통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2534-2539
    • /
    • 2015
  • 발전기의 전압조정장치(AVR)를 이용하여 전압을 조절하는 방식은 기존 아날로그방식과 교체중인 디지털방식을 나눌 수 있다. 일반적으로 브러쉬레스형의 여자시스템을 이용하여 전압을 조절할 경우 전부하에 대하여 전압변동을 작게 하여야 한다. AVR의 제어방법으로 PID(비례-적분-미분)제어방식이 많이 사용되고 있다. 그러나 이 제어기법은 제어대상에 대하여 제어기의 파라미터를 조절하여 과도응답을 줄이고 있다. 따라서 제어대상이 달라질 경우 다시 제어기의 파라미터를 다시 설정해야하는 문제점이 있다. 본 연구에서는 제어대상의 파라미터 변동에 대하여 제어기의 파라미터를 재설정 필요없이 iPID(intelligent PID)제어기를 이용하여 발전기 AVR시스템에 적용하여 전부하 시에도 전압변동이 작은 응답을 얻도록 설계하고 시뮬레이션과 실험을 통하여 과도응답을 개선하였다.

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.

FPGA를 이용한 DC Servo Motor의 속도제어 (Speed Control of DC Servo Motor using FPGA)

  • 박인수;서용원;박광현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.313-315
    • /
    • 2009
  • In this thesis, A methodology of system implement for PID controller, PWM logic, HSC logic, Host Communication and external DAC interface are implemented into single FPGA chip is proposed. The implemented system is used to control the speed of DC servo motor. A DATA block transfers set point value(SV) and P, I, D gain parameters to the corresponding Blocks respectively by the Host Communication to Computer. A HSC block generates process value(PV) by a pulse and $90^{\circ}$ shifted pulse from the encoder A PID block makes error(E) signal from the set value and process value and output manufacture value(MV) through the PID controller. In PWM block using the MV from the PID block, drives H-bridge controlling the Motor. Also DAC interface controls the DAC to graph the digital signal such as SV, PV, E, MV in FPGA onto the Oscilloscope.

  • PDF