• Title/Summary/Keyword: diffusion effect

Search Result 2,465, Processing Time 0.028 seconds

A Study of the Effect of Mineral Admixtures on the Chloride Diffusion of the Concrete Immersed in Chloride Solution (무기질 혼화재가 염수침지한 콘크리트의 염화물 확산에 미치는 영향에 관한 연구)

  • Kim Dong-Seok;Yoo Jae-Kang;Park Sang-Joon;Won Cheol;Kim Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.679-686
    • /
    • 2005
  • The corrosion of reinforcement induced by chloride ingress is the main deterioration cause of coastal reinforced concrete structures. In this paper, an experimental study was executed to investigate the effect of the kinds and replacement ratios of mineral admixtures (fly-ash, ground granulated blast-furnace slag silica fume and meta-kaolin), W/B and curing time on chloride diffusion of concrete by long-time immersion test in chloride solution. According to the result, the use of mineral admixtures was effective in improving the resistant to chloride ingress. The chloride penetration depth and diffusion coefficient were decreased as replacement ratios of mineral admixture were increased. The kind and replacement ratio of the mineral admixture are more important than the W/B in reducing the chloride diffusion of concrete. Chloride binding capacity of mineral admixture, which was sequenced in the order of MK

Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain

  • Sharma, Nidhi;Kumar, Rajneesh;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.19-38
    • /
    • 2008
  • A general solution to the field equations of homogeneous isotropic generalized thermoelastic diffusion with two relaxation times (Green and Lindsay theory) has been obtained using the Fourier transform. Assuming the disturbances to be harmonically time.dependent, the transformed solution is obtained in the frequency domain. The application of a time harmonic concentrated and distributed loads have been considered to show the utility of the solution obtained. The transformed components of displacement, stress, temperature distribution and chemical potential distribution are inverted numerically, using a numerical inversion technique. Effect of diffusion on the resulting expressions have been depicted graphically for Green and Lindsay (G-L) and coupled (C-T) theories of thermoelasticity.

Dynamic Response of Charge Transfer and Recombination at Various Electrodes in Dye-sensitized Solar Cells Investigated Using Intensity Modulated Photocurrent and Photovoltage Spectroscopy

  • Kim, Gyeong-Ok;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.469-472
    • /
    • 2012
  • Intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy were investigated to measure the dynamic response of charge transfer and recombination in the standard, $TiCl_4$-treated and the combined scattering layer electrode dye-sensitized solar cells (DSSCs). IMPS and IMVS provided transit time ($\tau_n$), lifetime ($\tau_r$), diffusion coefficient ($D_n$) and effective diffusion length ($L_n$). These expressions are derived that generation, collection, and recombination of electrons in a thin layer nanocrystalline DSSC under conditions of steady illumination and with a superimposed small amplitude modulation. In this experimental, IMPS/IMVS showed that the main effect of $TiCl_4$ treatment is to suppress the recombination of photogenerated electrons, thereby extending their lifetime. And the Diffusion coefficient of combined scattering layer electrode is $6.10{\times}10^{-6}$ higher than that of the others, resulting in longer diffusion length.

FINITE ELEMENT MODEL TO STUDY CALCIUM DIFFUSION IN A NEURON CELL INVOLVING JRYR, JSERCA AND JLEAK

  • Yripathi, Amrita;Adlakha, Neeru
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.695-709
    • /
    • 2013
  • Calcium is well known role for signal transduction in a neuron cell. Various processes and parameters modulate the intracellular calcium signaling process. A number of experimental and theoretical attempts are reported in the literature for study of calcium signaling in neuron cells. But still the role of various processes, components and parameters involved in calcium signaling is still not well understood. In this paper an attempt has been made to develop two dimensional finite element model to study calcium diffusion in neuron cells. The JRyR, JSERCA and JLeak, the exogenous buffers like EGTA and BAPTA, and diffusion coefficients have been incorporated in the model. Appropriate boundary conditions have been framed. Triangular ring elements have been employed to discretized the region. The effect of these parameters on calcium diffusion has been studied with the help of numerical results.

Examination of Vertical 1D Sediment Resuspension and Diffusion Model Using Field Data Collected in the Saemangeum Area (새만금 해역에서 연직 1차원 퇴적물 확산모델 검증)

  • Lee, Guan-Hong;Lee, Hee-Jun
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.537-543
    • /
    • 2008
  • The sediment resuspension and diffusion model is an integral part of a sediment transport and morphologic change model. We examined a vertical one-dimensional sediment resuspension and diffusion model using field data collected at about 10-m depth off the Saemangeun $4^{th}$ dike. The field data include waves, currents and suspended sediment concentration near the bed for about a day in May, 2007. The suspended sediment concentration obtained from the 1D model overestimated the observation about two orders of magnitude with single grain size and multiple grain sizes. The incorporation of the bed armoring effect, which adjusts the amount of suspended sediment with the available bed sediment, improved the agreement between the model and observation within a factor of two.

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials (나노구조재료의 소성변형 성질의 변형률속도 의존성)

  • Yoon Seung Chae;Kim Hyoung Seop
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

Effect of Pressure on Acoustic Pressure Response and NO Formation in Diluted Hydrogen-Air Diffusion Flames (희석된 수소-공기 확산 화염에서 음향파 응답과 NO 생성에 미치는 압력의 영향)

  • Sohn, Chae-Hoon;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.11-20
    • /
    • 1999
  • Acoustic pressure response and NO formation of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such non-monotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. Acoustic pressure response in each regime is investigated based on the Rayleigh criterion. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted. Emission index of NO shows similar behaviors as to the peak-temperature variation with pressure.

  • PDF

Influence of Air Void Characteristic on Chloride Diffusion Coefficient and Compressive Strength of Concrete using Urea and Sulfur (요소와 유황을 첨가한 콘크리트의 압축강도와 염화물 확산계수에 대한 공극특성의 영향)

  • Kim, Jae Hyun;Hong, Ki Nam;Jeon, Byeong Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.75-81
    • /
    • 2016
  • This study presents the effect of urea and sulfur admixture on compressive strength, chloride diffusion coefficient, and internal void distribution of concrete. Compressive strength of concretes with urea admixture by 5% increased by 5% relative to Control. However, that of concretes with urea admixture over 10% decreased. Chloride diffusion coefficient of concrete with urea and sulfur admixture decreased by 40% relative to Control. Additionally, the volume of internal void of concrete with urea and sulfur admixture decreased by 20% relative to Control. Therefore, it can be mentioned from test results that the use of adequate urea and sulfur admixture improves the mechanical properties and durability of concrete.

Effect of Mineral Admixture on Coefficient of Chloride Diffusion in Concrete (광물질 혼화재가 콘크리트의 염화물 확산계수에 미치는 영향)

  • 김명유;양은익;민석홍;심상배;최중철;이광교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.281-284
    • /
    • 2003
  • When concrete structures are exposed under marine condition for a long time, the steel in concrete is corroded due to the ingression of chlorides in the sea water. Because the damages of corrosion resulting from the chloride ion are very serious, many research have been performed. In this study, it was experimentally investigated that the mechanical and diffusion characteristics of concrete substituted with ordinary portland cement, silica fume and blast furnace slag to investigate the chloride ingress characteristics with concrete quality. Chloride diffusion coefficients in concrete shows increasing tendency as w/c ratio increase. Also test results indicate that blend of admixture become lower chloride diffusion coefficients in concrete as compared with normal concrete.

  • PDF

A Study on the Chloride Ion Diffusion Coefficient of Concrete by Submergence in Salt Water (침적시험에 의한 콘크리트의 염소이온 확산계수 평가)

  • 김동석;양승규;정연식;유재상;이종열;본간건일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.297-300
    • /
    • 2003
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon. In this study, It is evaluated the diffusion coefficient of chloride ion in non-steady state by Fick's second law. Submergence method in salt water carried out in this experiment. Two types of cement which is different in mineral composition were used. In addition, the effect of mineral admixtures of blast-furnace slag and meta-kaolin was studied. In conclusion, the diffusion coefficient of chloride ion is much affected according to cement type and mineral admixtures, also, it is proved that meta-kaolin as well as blast-furnace slag is effective in preventing penetration of chloride ion.

  • PDF