• Title/Summary/Keyword: diffusion effect

Search Result 2,461, Processing Time 0.064 seconds

Interdiffusion Effect of Inserted Nanolayer in Excange-biased NiFe/FeMn/NiFe Multilayer

  • Kim, S.W.;Kim, J. K.;Lee, K.A.;Kim, B.Y.;Kim, J.H.;Lee, J.Y.;Lee, S.S.;Hwang, D.G.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.160-161
    • /
    • 2002
  • One problem in giant magnetoresistance(GMR) spin valves and magnetic tunneling junctions(MTJ) exchange biased by Mn-based antiferromagnets is the Mn diffusion into the ferromagnetic layer and other layers upon annealing.$^{1-3}$ It seems that Mn diffusion that may occur during annealing has a key role in the exchange biasing. We have fabricated multilayers inserting the nanolayer(NL) between antiferromagnet and ferromagent using ion-beam deposition system to study the diffusion effect for the exchange bias. (omitted)

  • PDF

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.

EFFECT OF HEAT ABSORPTION ON UNSTEADY MHD FLOW PAST AN OSCILLATING VERTICAL PLATE WITH VARIABLE WALL TEMPERATURE AND MASS DIFFUSION IN THE PRESENCE OF HALL CURRENT

  • RAJPUT, US;KANAUJIA, NEETU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.241-251
    • /
    • 2018
  • The present study is carried out to examine the combined effect of heat absorption on flow model. The model consists of unsteady flow of a viscous, incompressible and electrically conducting fluid. The flow is along an impulsively started oscillating vertical plate with variable mass diffusion. The magnetic field is applied perpendicular to the plate. The fluid model under consideration has been solved by Laplace transform technique. The numerical data obtained is discussed with the help of graphs and table. The numerical values obtained for skin-friction have been tabulated. To shorten the lengthy equations in the solution some symbols have been assumed, which are mentioned in appendix. The appendix is included in the article as the last section of the manuscript.

Effect of Bonding Temperature and Bonding Pressure on Deformation and Tensile Properties of Diffusion Bonded Joint of STS304 Compact Heat Exchanger (STS304 콤팩트 열교환기 고상확산접합부의 접합부 변형과 인장성질에 미치는 접합온도 및 접합압력의 영향)

  • Jeon, Ae-Jeong;Yoon, Tae-Jin;Kim, Sang-Ho;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.46-54
    • /
    • 2014
  • In this study, the effect of bonding temperature and bonding pressure on deformation and tensile properties of diffusion bonded joint of STS304 compact heat exchanger was investigated. The diffusion bonds were prepared at 700, 800 and $900^{\circ}C$ for 30, 60 and 90 min in pressure of 3, 5, and 7 MPa under high vacuum condition. The height deformation of joint decreased and the width deformation of joint increased with increasing bonding pressure at $900^{\circ}C$. The ratio of non-bonded layer and void observed in the joint decreased with increasing bonding temperature and bonding pressure. Three types of the fracture surface were observed after tensile test. The non-bonded layer was observed in diffusion bonded joint preformed at $700^{\circ}C$, the non-bonded layer and void were observed at $800^{\circ}C$. On the other hand, the ductile fracture occurred in diffusion bonded joint preformed at $900^{\circ}C$. Tensile load of joint bonded at $800^{\circ}C$ was proportional to length of bonded layer and tensile load of joint bonded at $900^{\circ}C$ was proportional to minimum width of pattern. The tensile strength of joint was same as base metal.

Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM

  • Raju, R. Srinivasa;Reddy, G. Jithender;Rao, J. Anand;Rashidi, M.M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.349-362
    • /
    • 2016
  • The numerical solutions of unsteady hydromagnetic natural convection Couette flow of a viscous, incompressible and electrically conducting fluid between the two vertical parallel plates in the presence of thermal radiation, thermal diffusion and diffusion thermo are obtained here. The fundamental dimensionless governing coupled linear partial differential equations for impulsive movement and uniformly accelerated movement of the plate were solved by an efficient Finite Element Method. Computations were performed for a wide range of the governing flow parameters, viz., Thermal diffusion (Soret) and Diffusion thermo (Dufour) parameters, Magnetic field parameter, Prandtl number, Thermal radiation and Schmidt number. The effects of these flow parameters on the velocity (u), temperature (${\theta}$) and Concentration (${\phi}$) are shown graphically. Also the effects of these pertinent parameters on the skin-friction, the rate of heat and mass transfer are obtained and discussed numerically through tabular forms. These are in good agreement with earlier reported studies. Analysis indicates that the fluid velocity is an increasing function of Grashof numbers for heat and mass transfer, Soret and Dufour numbers whereas the Magnetic parameter, Thermal radiation parameter, Prandtl number and Schmidt number lead to reduction of the velocity profiles. Also, it is noticed that the rate of heat transfer coefficient and temperature profiles increase with decrease in the thermal radiation parameter and Prandtl number, whereas the reverse effect is observed with increase of Dufour number. Further, the concentration profiles increase with increase in the Soret number whereas reverse effect is seen by increasing the values of the Schmidt number.

Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments (아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동)

  • Park, Jin-seong;Lee, Ho Jong;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.

An Empirical Analysis on the Diffusion Impact of IT Technological Knowledge (정보통신 기술지식의 파급효과에 대한 실증분석)

  • 조형곤;박광만;이영용;박용태;김문수
    • Journal of Technology Innovation
    • /
    • v.8 no.1
    • /
    • pp.73-94
    • /
    • 2000
  • The main objective of this research is to examine the spillover effects of technological knowledge from IT industry to other industrial sectors and, based on empirical findings, to draw policy implications and suggest policy directions. To this end, we divide IT industry into IT equipment and IT service, assuming that these two sub-sectors are considerably different each other in terms of technology knowledge flow. Other industries are classified into 17 different sectors based on the KSIC of 1990. As the proxy measure of technological knowledge, the notion of R&D stock is employed. The Input/output(I/O) Table is used to define the inter-industrial flow pattern and to draw the knowledge flow matrix. As the research methodology, cost function model is employed to gauge the spillover effects of technological knowledge of IT industry. Based on the results of analysis, it is found that the economic impact of technology diffusion also exhibits a different pattern between IT equipment and IT service. The diffusion of IT equipment tends to show labor-substitution effect whereas IT service displays labor-creation effect. This fact should be considered in devising industry, education, and labor policy. The expectations from this research are as follows. First, the sectoral pattern, difference between IT equipment and service in particular, identified from this research may shed light on the sector-specific policy direction. It is emphasized that a sector-specific approach, rather than an aggregate approach, is relevant for formulating IT policy. Second, it is expected that the importance of technology diffusion programs and policy measures are recognized among policy makers in IT industry.

  • PDF

A model for columnar-dendritic solidification of binary alloys accounting for dendrite tip undercooling (선단과냉을 고려한 이원합금의 주상 수지상응고 모델)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.698-707
    • /
    • 1998
  • A simplified model for predicting microsegregation during columnar-dendritic solidification of binary alloys is developed, in which back diffusion, dendrite arm coarsening and dendrite tip undercooling are simultaneously incorporated. The inclusion of tip undercooling is accomplished by modifying the initial conditions of the existing solute diffusion model, in such forms that tip undercooling depresses the beginning of solidification below the liquidus temperature, and that the secondary arm spacing evolves in accordance with the minimum undercooling theory. Sample calculations for the well-known benchmark system show that the present predictions not only consist with the extablished limiting cases, but also agree favorably with the available experimental data within a reasonable tolerance. In particular, a typical decreasing trend in the eutectic fraction at high cooling rates is successfully resolved. Comparison of the individual and combined effects of characteristic parameters in reference with the limiting cases reveals the interactions among parameters. Every parameter plays the role of reducing the eutectic fraction, and the degree of influence depends primarily on the cooling rate. Coarsening enhances the effect of tip undercooling, while suppressing that of back diffusion. A vigorous back diffusion seems to restrain the apperance of the undercooling effect. Overall, each contribution of the three parameters to microsegregation is estimated to be of the same order, which suffices to justify the present study.

The Effect of Mn Addition on Nitrogenation Behavior and Magnetic Properties of Sm-Fe Alloy Powder Produced by Reduction-diffusion Method (환원-확산법에 의해 제조된 Sm-Fe 합금분말의 질화거동 및 자기특성에 미치는 Mn첨가 효과)

  • Seo, Young-Taek;Baek, Youn-Kyoung;Lee, Jung-Goo;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • In the present study, we systematically investigated the effect of Mn addition on nitrogenation behavior and magnetic properties of Sm-Fe powders produced by reduction-diffusion process. Alloy powders with only $Sm_2(Fe,Mn)_{17}$ single phase were successfully produced by the reduction-diffusion process. The coercivity of $Sm_2(Fe,Mn)_{17}$ powder rapidly increased during nitrogenation and reached the maximum of 637 Oe after 16 hours. After further nitrogenation, it decreased. In contrast, the coercivity of $Sm_2Fe_{17}$ powder gradually increased during nitrogenation for 24 hours. The coercivity of $Sm_2(Fe,Mn)_{17}$ powder was higher than that of $Sm_2Fe_{17}$ powder at the same condition of nitrogenation. It was considered that the Mn addition facilitates the nitrogenation of $Sm_2Fe_{17}$ powder and enhances the coercivity.

Diffusion Analysis of the High Temperature and Salinity Water by the 3-D Baroclinic Flow Model (3-D 밀도류모델을 이용한 고온${\cdot}$고염수의 확산해석)

  • Kim, Jong-In;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.3-13
    • /
    • 1999
  • The diffusion characteristics of the high temperature and salinity water discharged in Chinhae Bay under BMP(Barge-Mounted Plants) desalination processes were simulated to access environmental impact. The 3-D baroclinic flow model is formulated by integrating the basic equations with respect to each control volume and by transforming them into a finite difference form using the space-staggered grid system. With a 3-D baroclinic flow model, the tide-induced and density-induced current was computed and confirmed by comparing with observed data. From the results of numerical experiment, it is expected that the maximum diffusion lengths of the high temperature and salinity which increase $0.6^{circ}C$ and 0.2 after discharging are 1 km and 3.5km, respectively. It may be expected that the discharge has an effect on surrounding area of discharge, but not an effect on whole area of Chinhae Bay.

  • PDF