• Title/Summary/Keyword: diffraction efficiency

Search Result 577, Processing Time 0.027 seconds

Influences of direction for hexagonal-structure arrays of lens patterns on structural, optical, and electrical properties of InGaN/GaN MQW LEDs

  • Lee, Kwang-Jae;Kim, Hyun-June;Park, Dong-Woo;Jo, Byoung-Gu;Oh, Hye-Min;Hwang, Jeong-Woo;Kim, Jin-Soo;Lee, Jin-Hong;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.153-153
    • /
    • 2010
  • Recently, to develop GaN-based light-emitting diodes (LEDs) with better performances, various approaches have been suggested by many research groups. In particular, using the patterned sapphire substrate technique has shown the improvement in both internal quantum efficiency and light extraction properties of GaN-based LEDs. In this paper, we discuss the influences of the direction of the hexagonal-structure arrays of lens-shaped patterns (HSAPs) formed on sapphire substrates on the crystal, optical, and electrical properties of InGaN/GaN multi-quantum-well (MQW) LEDs. The basic direction of the HSAPs is normal (HSAPN) with respect to the primary flat zone of a c-plane sapphire substrate. Another HSAP tilted by 30o (HSAP30) from the HSAPN structure was used to investigate the effects of the pattern direction. The full width at half maximums (FWHMs) of the double-crystal x-ray diffraction (DCXRD) spectrum for the (0002) and (1-102) planes of the HSAPN are 320.4 and 381.6 arcsecs., respectively, which are relatively narrower compared to those of the HSP30. The photoluminescence intensity for the HSAPN structure was ~1.2 times stronger than that for the HSAP30. From the electroluminescence (EL) measurements, the intensity for both structures are almost similar. In addition, the effects of the area of the individual lens pattern consisting of the hexagonal-structure arrays are discussed using the concept of the planar area fraction (PAF) defined as the following equation; PAF = [1-(patterns area/total unit areas)] For the relatively small PAF region up to 0.494, the influences of the HSAP direction on the LED characteristics were significant. However, the direction effects of the HSAP became small with increasing the PAF.

  • PDF

Surface Characterization of Rocks after Treated with Developed Consolidants (개발 강화제 처리 전후의 암석 표면에 나타나는 특성 변화 연구)

  • Kim, Jeong-Jin;Jang, Yun-Deuk;Won, Jong-Ok;Kang, Young-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.105-115
    • /
    • 2012
  • The consolidants have been widely used for the consolidation of decaying heritage stone surfaces. In this study, X-ray diffraction analysis, polarized and stereo-microscope and scanning electron microscope were used to study the surface characterization of granite, sandstone and marble, and to assess the efficiency and the effects of the developed condolidants in the field. The developed consolidants used in this experiment are 100%1T1G and 3%40nm/97%1T1G. The effects of consolidants are 3%40nm/97%1T1G${\gg}$100%1T1G in granite, 3%40nm/97%1T1G>100%1T1G in sandstone, and 3%40nm/97% 1T1G=100%1T1G in marble. The characteristics of rock surface when treated with consolidants show different result according to consolidantes type. This result of treating with consolidant can be used for the conservation of an decaying heritage stone.

Preparation and Current-Voltage Characteristics of Well-Aligned NPD (4,4' bis[N-(1-napthyl)-N-phenyl-amino] biphenyl) Thin Films (분자배열된 4,4' bis[N-(1-napthyl)-N-phenyl-amino] biphenyl 증착박막 제조와 전기적 특성)

  • Oh, Sung;Kang, Do-Soon;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.591-596
    • /
    • 2006
  • Topology and molecular ordering of NPD(4,4'-bis-[N-(1-naphthyl)-N-phenyl-amino]biphenyl) thin films deposited under magnetic field with post-deposition annealing were investigated. NPD was deposited onto ITO glass substrates via thermal evaporation process in vacuum. It is of great importance for highly oriented organic/metal films to have improved device performances such as higher current density and luminance efficiency. AFM (Atomic Force Microscope) and XRD (X-Ray Diffraction) analyses were used to characterize the topology and structure of oriented NPD films. The multi-source meter was used to observe the current-voltage characteristics of the ITO (Indium-Tin Oxide) / NPD (4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl) / Al (Aluminum) device. While NPD thin films deposited under magnetic field were not molecularly well aligned according to the XRD results, the films after post-deposition annealing at $130^{\circ}C$ were well-oriented. AFM images show that NPD thin films deposited under magnetic field had a smoother surface than those deposited without magnetic field. The current-voltage performance of NPD thin films was improved due to the enhanced electron mobility in the well-aligned NPD films.

Low Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn/$CeO_2$ and Mn/$ZrO_2$ (Mn/$CeO_2$와 Mn/$ZrO_2$ 촉매 상에서 $NH_3$를 사용한 NO의 선택적 촉매 산화 반응)

  • Ko, Jeong Huy;Park, Sung Hoon;Jeon, Jong-Ki;Sohn, Jung Min;Lee, See-Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • Manganese (Mn) catalysts were generated using $CeO_2$ and $ZrO_2$supports synthesized by the supercritical hydrothermal method and two different Mn precursors, aimed at an application for a low-temperature selective catalytic reduction process. Manganese acetate (MA) and manganese nitrate (MA) were used as Mn precursors. Effects of the kind and the concentration of the Mn precursor used for catalyst generation on the NOx removal efficiency were investigated. The characteristics of the generated catalysts were analyzed using $N_2$ adsorption-desorption, thermo-gravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. De-NOx experiments were carried out to measure NOx removal efficiencies of the catalysts. NOx removal efficiencies of the catalysts generated using MA were superior to those of the catalysts generated using MN at every temperature tested. Analyses of the catalyst characteristics indicated that the higher NOx removal efficiencies of the MA-derived catalysts stemmed from the higher oxygen mobility and the stronger interaction with support material of $Mn_2O_3$ produced from MA than those of $MnO_2$ produced from MN.

Development of the Measurement Method of Extremely Low Level Activity with Imaging Plate (Imaging Plate를 이용한 극저준위 방사능 측정에 관한 연구)

  • Kwak, Ji-Yeon;Lee, K.B.;Lee, Jong-Man;Park, Tae-Soon;Oh, Pil-Jae;Lee, Min-Kie;Seo, Ji-Suk;Hwang, Han-Yull
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • An imaging plate(IP) detector, a two-dimensional digital radiation detector that can acquire image of radioactivity distribution in a sample, has been applied in many fields; for industrial radiography, medical diagnosis, X-ray diffraction test, etc. In this study, the possibility of IP detector to be used lot measuring radioactivity of sample is explored using its high sensitivity, higher spatial resolution, wider dynamic range and screen uniformity for several kinds radiations. First, the IP detector is applied to measure the surface uniformity for area source. Surface uniformity is measured rapidly and nondestructively by measuring the radioactivity distribution of common standard area source$(^{241}Am)$. Next, the IP is employed to study the possibility of measuring an extremely low-level activity of environmental sample. For this study the screen uniformity, shield effect of background radiation, linear dynamic range and fading effect of the IP detector is investigated. The potato, banana, radish and carrot samples are chosen to measure ultra low-level activity of $^{40}K$ isotope. The efficiency calibration of IP detector is carried out using the standard source.

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

Hydrogen Production from Photocatalytic Splitting of Water/Methanol Solution over a Mixture of P25-TiO2 and AgxO (산화은/이산화티타늄 혼합물을 광촉매로 활용한 물/메탄올 분해 수소제조)

  • Kim, Kang Min;Jeong, Kyung Mi;Park, No-Kuk;Lee, Tae Jin;Kang, Misook
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • A photocatalyst which mixed by the commercialized P25-TiO2 and a synthesized AgxO was used in an appropriate weight ratio to effectively produce hydrogen gas in this study. The AgxOs were synthesized with the conventional sol-gel method, and tetramethylammonium hydroxides were added at the synthesis process in order to stabilize the solutions, and then the solutions were heat-treated at the temperatures of -5, 25, and 50 ℃, resulted to obtain the three types of silver oxides. Physicochemical properties of the synthesized AgxOs were identified through X-ray diffraction analysis (XRD), scanning emission microscopy (SEM), ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). In the photolysis results of water/methanol (weight ratio 1:1) solution, the mixture of P25-TiO2/AgxO exhibited a significantly higher hydrogen gases evolution, compared to that of pure P25-TiO2. Additionally, the addition of H2O2 as an supplement oxidant and in AgxO synthesized at 50 ℃ improved the hydrogen production efficiency. In particular, the emitted hydrogen gases reached to 13,000 μmol during 8 hours when a mixed catalyst, AgxO of 0.1 g and P25-TiO2 of 0.9 g, were used.

Characteristics of Microwave Leaching for the Removal of Bi, As from the Sulfide Mineral Concentrate (황화광물정광으로부터 Bi, As 제거를 위한 마이크로웨이브 용출 특성)

  • On, Hyun-Sung;Togtokhmaa, B.;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.137-147
    • /
    • 2018
  • The aim of this study was to leach penalty elements, such as Bi and As, effectively through microwave leaching of a gold concentrate sample containing penalty elements with nitric acid solution. For this purpose, the time effect of microwave leaching, nitric acid concentration effect, and sample addition effect in a microwave were examined. The experiment, demonstrated that the leaching rate of penalty elements increased as microwave leaching time and nitric acid concentration increased and concentration addition decreased. When a microwave heating experiment was carried out on the concentrate and ore minerals, Bi was removed by as much as 90%, and the phase of arsenopyrite was transformed in the order of arsenopyrite (FeAsS), pyrrhotite (FeS), and hematite ($Fe_2O_3$). When the X-ray diffraction (XRD) analysis was carried out with solid residue, elemental sulfur and anglesite were identified. The intensity of the XRD peaks of elemental sulfur and anglesite increased, and the peaks were sharper when the microwave leaching time was 12 min instead of 1 min, the nitric acid concentration was 4 M in rather than 0.5 M, and the concentration addition was 30 g rather than 5 g. This was probably because more elemental sulfur and anglesite were generated in the leaching solution as the leaching efficiency increased. Bi can be leached as valuable elements in the leaching solution through microwave leaching processes while they are released to the environment through a microwave heating processes.

Preparation of nanoparticles CuInSe2 absorber layer by a non-vacuum process of low cost cryogenic milling (저가의 cryogenic milling 비진공법을 이용한 나노입자 CuInSe2 광흡수층 제조)

  • Kim, Ki-Hyun;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Chalcopyrite material $CuInSe_2$ (CIS) is known to be a very prominent absorber layer for high efficiency thin film solar cells. Current interest in the photovoltaic industry is to identify and develop more suitable materials and processes for the fabrication of efficient and cost-effective solar cells. Various processes have been being tried for making a low cost CIS absorber layer, this study obtained the CIS nanoparticles using commercial powder of 6 mm pieces for low cost CIS absorber layer by high frequency ball milling and cryogenic milling. And the CIS absorber layer was prepared by paste coating using milled-CIS nanoparticles in glove box under inert atmosphere. The chalcopyrite $CuInSe_2$ thin films were successfully made after selenization at the substrate temperature of $550^{\circ}C$ in 30 min, CIS solar cell of Al/ZnO/CdS/CIS/Mo structure prepared under various deposition process such as evaporation, sputtering and chemical vapor deposition respectively. Finally, we achieved CIS nanoparticles solar cell of electric efficient 1.74 % of Voc 29 mV, Jsc 35 $mA/cm^2$ FF 17.2 %. The CIS nanoparticles-based absorber layers were characterized by using EDS, XRD and HRSEM.

Produce of High Purity Tin from Spent Solder by Electro Refining (폐 솔더 잉곳으로부터 전해정련에 의한 고순도 주석 생산)

  • Lee, Ki-Woong;Kim, Hong-In;Ahn, Hyo-Jin;Ahn, Jae-Woo;Son, Seong-Ho
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • The high pure tin production was conducted from crude-tin containing waste solder by electro-refining process. The electro-refining process maintained at 0.2V produced tin with purity of 99.98%, whereas a little increase of voltage to 0.3 V resulted tin purity of 99.92%. The high pure tin of 3N in the present process was produced by fixing the voltage at 0.3V. Considering the high pure tin production, the current density was maintained within $100-120A/m^2$ with current efficiency of 94%. Addition of sulfuric acid of 20 ~ 25 g/L to the electrolyte solution was performed in order to keep Pb (lead) concentration below 100 mg/L in the final tin product. The anode slime generated during electro refining process was analyzed by X-ray diffraction (XRD) study to understand the phases of impurities in it. It detected the presence of Cu and Ag in the slime as in the form of $Cu_6Sn_5$, $Ag_3Sn$, whereas Pb occurred as $PbSO_4$ compound.