• Title/Summary/Keyword: difficult-to-cut materials

Search Result 115, Processing Time 0.026 seconds

Performance Evaluation of Dicing Sawing of High-densified Al2O3 Bulk using Diamond Electroplated Band-saw Machine (다이아몬드전착 밴드쏘우장비를 이용한 고치밀도 알루미나소결체의 다이싱가공 성능평가)

  • Lee, Yong-Moon;Park, Young-Chan;Kim, Dong-Hyun;Lee, Man-Young;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2017
  • Recently, the brittle materials such as ceramics, glass, sapphire and textile material have been widely used in semiconductors, aerospace and automobile owing to high functional characteristics. On the other hand, it has the characteristics of difficult-to-cut material relative to all materials. In this study, diamond electro-deposited band-saw machine was developed to operate stably using water-coolant type through relative motion between band-saw tool and $Al_2O_3$ material. High densified $Al_2O_3$ material was manufactured by spark plasma sintering method. The bulk density was observed by the Archimedes law and the theoretical density was estimated to be $3.88g/cm^3$ and its hardness 14.7 MPa. From the dicing sawing test of $Al_2O_3$ specimen, behavior of surface roughness and band-saw wear are dominantly affected by the increase of the band-saw linear velocity. Additionally, an continuous pattern type of diamond band-saw was a very effective due to entry impact as a one-off for brittle material.

A Study on the Machinability of Titanium (티타니움의 절삭성에 관한 연구)

  • Cheong, Seong-Gyu;Oh, Seok-Hyung;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 1989
  • Recently, the researches on cutting the new material have been done for development of aerospace industrial engineering. Especially, titanium ally is well known as heat resisting, antiwear, anticorrosion and difficult-to-machine materials. Many studies on the analysis of shear angle have been done for improving productivity in cutting these materials. In case of titanium alloy, the saw-toothed type of chip which has wave surface of a triangular form, an eccentric from of a continuous type of chip that is produced in the cutting process, was checked. Nakayama supposed that a maximum shear strewss plane and the shear crack in the free surface made an angle of $45^{\circ}$ .deg. , but it's usually much larger than that. In this paper, the author analyzed the shear conditions of the cutting process in the quick-stopping device with the help SEM-photographs, and measured the hypotenuse angle directly in the photographs of the chips. In conclusion, the author tried to find the shear angle in the cutting process with the saw-toothed chip and compared it with the shear angles which can be calculated from the theories established by others. The results obtained are as follows. 1. In case of the saw-toothed chips, the equivalent cutting ratio can be calculated by using the chip thickness to two-thirds of ramp height. 2. The theory of Ernst-Merchant is not applicable to the titanium and its alloys which does not fractured in accordance with the theory of maximum shear stress. 3. When we cut the titanium alloys which produced the saw-toothed chips, the shear angle can be found with the theories of Rowe-Spick, P.K. Wright and the measurement of hypotenuse angle.

  • PDF

Comparative Analysis of Construction Productivity for Modernized Korean Housing (Hanok) (보급형 신한옥 개발을 위한 건설 생산성 분석)

  • Kim, Min;Kim, Yesol;Lee, YunSub;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2013
  • The interest in traditional Korean housing has greatly increasing in Korean housing market. However, it is difficult to wildly disseminate for a high construction cost reason. In order to effectively facilitate the Hanok construction, Korean government has initiated a project that develops a new style Korean housing, which meets the requirements of low cost and modernized life style. Cost of building is mainly affected by materials and construction methods. Hanok has some special commodities those significantly impact the cost. In order to effectively cut down the costs, well-organized planning for costs is very important. Also, improving the productivity by utilizing new materials and methods can result in cost down. In this context, this paper compared and analyzed two different types of Korean housing; one is a modernized Korean house which used new materials and methods, the other is a traditional Korean house which was build up by purely traditional methods. Productivity has also been compared and analyzed for 5 major commodities between two types of models. Based on these comparative data, effect of cost down by new model has been analyzed. As a result it is confirmed that by using the new materials and methods could highly effect to increasing productivity and cost down. Especially, the cost of Roofing have been more influenced by using new material while the Wood and Finishes have been influenced by new construction method. Construction cost of Foundation (Earthwork, Concrete, Masonry) and Openings were influenced both factors, changing of materials and methods.

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

An Evaluation of Skiving Cutting Characteristics of TiCN PACVD Coating Caribide Hob (TiCN PACVD코팅 초경호브의 Skiving절삭특성 평가)

  • Cheon, Jong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.471-477
    • /
    • 2012
  • SCM420 steel tempered after performing gear hove PACVD carbide coating on the surface after the cutting surface hardness was high. Difficult-to-cut, without coating is classified as mild as large, including materials like mild, high strength that improves tool life and productivity have limited availability. Drive to improve it in the TiCN-coated carbide call for war to the finish coating on cutting a hob skiving good workability, tool wear less, 2.5-fold increase in tool life results were obtained. Experiments using CNC Skiving hobbing machine with wet cutting conditions, cutting speed and feed rate to apply a variety of the tool wear and surface roughness data were obtained. Results from condition 2 (V = 200m/min F = 0.7mm/rev) cutting speed feed mark the cutting surface microstructure and surface roughness Rmax $4.7{\mu}m$(Ra $1.19{\mu}m$) of the data was obtained.

Electron Microscopic Studies of Human Keloid and Hypertrophic Scars (Keloid와 Hypertrophic Scar ( 비후성반흔 )의 형태학적 관찰)

  • Kim, Chung-Soak;Lew, Jae-Duk
    • Applied Microscopy
    • /
    • v.3 no.1
    • /
    • pp.29-38
    • /
    • 1973
  • Introduction. The human cutaneous scars manifest themselves many ways in different types according to the factors such as the age, sex, race of the patient as well as the location,. kind and heal ing process of the wound. Among the scars it is quiet difficult to verify the clinical course of the hypertrophic or keloidal scars from the true keloids. However, clinical observations indicate that stress, either mechanical or in the forms of chronic infections, can induce a functional change in the fibroblasts causing an excessive production of collagenous matrix. In this study, we preliminary attempt to justify any difference of the cellular structure between keloids and hypertrophic scars by using electron microscope. Material and Methods. A total of 23 cases: 2 scars, 2 hypertrophic scars and 19 keloids are examined. Immediately, the biopsy tissue was fixed in 10% neutral formalin and 4% glutaraldehyde solution in phosphate buffer for 4 hours, post fixed in 1 % osmium tetraoxide for two hours, dehydrated with graded alcohol, and embedded in Epon 812. Thick sections were stained with hematoxylin eosin, periodic acid-Schiff(PAS) and Van Gieson stain. Thin sections were cut and uranyle acetate, lead citratestain and examined with the electron microscope. Result. The morphologic features of keloid showed thick, homogenously eosinophilic bands of collagen and numberous large active fibroblasts. The hypertrophic scar and soft scar are more cellular than keloid and composed thinner collagenous fiber. For this paper in the etiology of keloids can not as be defined, but and interesting keloidal tissue fibroblast showed irregular nucleus with irregular shape dense bodies and fibril materials contained in to the cytoplasm.

  • PDF

Role of $^{18}F$-fluoro-2-deoxyglucose Positron Emission Tomography in Gastric GIST: Predicting Malignant Potential Pre-operatively

  • Park, Jeon-Woo;Cho, Chang-Ho;Jeong, Duck-Su;Chae, Hyun-Dong
    • Journal of Gastric Cancer
    • /
    • v.11 no.3
    • /
    • pp.173-179
    • /
    • 2011
  • Purpose: It is difficult to obtain biopsies from gastrointestinal stromal tumors (GISTs) prior to surgery because GISTs are submucoal tumors, despite being the most common nonepithelial neoplasms of the gastrointestinal tract. Unlike anatomic imaging techniques, PET-CT, which is a molecular imaging tool, can be a useful technique for assessing tumor activity and predicting the malignant potential of certain tumors. Thus, we aimed to evaluate the usefulness of PET-CT as a pre-operative prognostic factor for GISTs by analyzing the correlation between the existing post-operative prognostic factors and the maximum SUV uptake (SUVmax) of pre-operative 18F-fluoro-2-deoxyglucose (FDG) PET-CT. Materials and Methods: The study was conducted on 26 patients who were diagnosed with gastric GISTs and underwent surgery after being examined with pre-operative FDG PET-CT. An analysis of the correlation bewteen (i) NIH risk classification and the Ki-67 proliferation index, which are post-operative prognostic factors, and (ii) the SUVmax of PET-CT, which is a pre-operative prognostic factor, was performed. Results: There were significant correlations between (i) SUVmax and (ii) Ki-67 index, tumor size, mitotic count, and NIH risk group (r=0.854, 0.888, 0.791, and 0.756, respectively). The optimal cut-off value for SUVmax was 3.94 between "low-risk malignancy" and "high-risk malignancy" groups. The sensitivity and specificity of SUVmax for predicting the risk of malignancy were 85.7% and 94.7%, respectively. Conclusions: The SUVmax of PET-CT is associated with Ki-67 index, tumor size, mitotic count, and NIH classification. Therefore, it is believed that PET-CT is a relatively safe, non-invasive diagnostic tool for assessing malignant potential pre-operatively.

Count of platelet and mean platelet volume score: serologic prognostic factor in patients with oral squamous cell carcinoma

  • Park, Jae Woo;Kim, Chul-Hwan;Ha, Yong Chan;Kim, Moon Young;Park, Sung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.5
    • /
    • pp.305-311
    • /
    • 2017
  • Objectives: TNM staging, especially for lymph node metastasis, is the scoring system most widely used among prognostic factors for cancer survival. Several biomarkers have been studied as serologic markers, but their specificity is low and clinical applications are difficult. This study aimed to establish a scoring system for patients with oral squamous cell carcinoma (OSCC) using platelet (PLT) and mean platelet volume (MPV) levels measured postoperatively and to evaluate their significance as prognostic factors. Materials and Methods: We studied 40 patients admitted to the Department of Oral and Maxillofacial Surgery of Dankook University Hospital who were diagnosed with primary OSCC histopathologically between May 2006 and May 2012. Clinical pathological information obtained from the medical records of each patient included age, sex, height, weight, tumor location, degree of differentiation, tumor diameter, lymph node metastasis, TNM stage, and other test values including white blood cell, MPV, PLT, C-reactive protein (CRP), and albumin obtained through a test conducted within 7 days before surgery. Count of platelet (COP)-MPV Score: Patients with both PLT and MPV values below the cut-off values were defined as score 0 (group A). Patients with at least one of the two higher than the cut-off value were defined as score 1 (group B). Results: Univariate analyses showed N-metastasis, COP-MPV (A vs B), PLT, platelet-lymphocyte ratio, and CRP were statistically significant prognostic factors. A multivariate Cox proportional hazards model showed N-metastasis (hazard ratio [HR] 6.227, P=0.016) and COP-MPV (A vs B) (HR 18.992, P=0.013) were independent prognostic factors with a significant effect on survival. Conclusion: COP-MPV score is a simple and cost-effective test method and is considered a more effective prognostic factor than other considered factors in predicting the prognosis of OSCC patients.

A Study on Structural Maintenance of 'Old Wall' Designated as National Registered Cultural Heritage (국가등록문화재로 지정된 옛 담장의 정비 양상)

  • So, Hyun-Su;Jeong, Myeong-Seok
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • This study identified the materials and construction methods of 'Old Wall' in 13 villages which were designated as National Registered Cultural Heritage at the time of designation and examined the their structural changes based on field survey. The results are as follows: First, the 'Old Wall' consisted of 10 Soil-Stone Wall and 5 Stone Wall. At the time of designation, Stone Wall, which was built irregularly by dry-construction of natural stones, is similar in shape, but Soil-Stone Wall showed difference by the construction method of making used stones, joints, and faces. Second, the study extracted the changes of 'Old Wall' by repair and examined the changes of construction methods as well as the substitution and addition of materials of structure. The wall-roof was built with cement roof-tile and asbestos slate which have the advantage improve durability and cost-effectiveness. In addition, tile-mouth soil was added to korean traditional roof-tile to prevent rainwater from flowing in. Besides, to improve constructional convenience, the natural stone of the wall-body was replaced with blast stone, float stone and cut stone. Cement block, cement brick and cement mortar were frequently used to repair as well. As Soil-Stone Wall was transformed from irregular pattern-construction to comb pattern-construction and wet-construction was changed to dry-construction, it caused landscape and structural problems. Also, the layer of cement mortar applied to wall-foundation blocked the flow of rainwater that was induced by dry-construction of natural stones. Third, the study regarded that the problem with the repair of 'Old Wall' may occur as it is located in living space, because the owner of the wall could repair for the minor damages without technical knowledge. In addition, it is difficult for repair companies in charge of maintenance of Cultural Heritage to supply local materials, and it is differential construction specifications are not applied.