• Title/Summary/Keyword: differentiation therapy

Search Result 347, Processing Time 0.022 seconds

Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

  • Lee, Jong Hoon;Lee, Kuk Han;Kim, Min Ho;Kim, Jun Pyo;Lee, Seung Jae;Yoon, Jinah
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 2012
  • Background This study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs) from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs) to differentiate into hepatocytes. Methods The adipose-derived stem cells (ADSCs) were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS) staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA). Results The majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers. Conclusions MSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

  • Zhang, Ruiping;Li, Jing;Li, Jianding;Xie, Jun
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.650-655
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

Characterization and Differentiation of Synovial Fluid Derived Mesenchymal Stem Cells from Dog (개 관절 윤활액 유래 중간엽 줄기세포의 특성과 분화능 분석)

  • Lee, Jeong-Hyeon;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • The synovial tissues are a valuable MSCs source for cartilage tissue engineering because these cells are easily obtainable by the intra-articular biopsy during diagnosis. In this study, we isolated and characterized the canine MSCs derived from synovial fluid of female and male donors. Synovial fluid was flushed with saline solution from pre and post-puberty male (cM1-sMSC and cM2-sMSC) and female (cF1-sMSC and cF2-sMSC) dogs, and cells were isolated and cultured in advanced-DMEM (A-DMEM) supplemented with 10% FBS in a humidified 5% $CO_2$ atmosphere at $38.5^{\circ}C$. The cells were evaluated for the expression of the early transcriptional factors, such as Oct3/4, Nanog and Sox2 by RT-PCR. The cells were induced under conditions conductive for adipogenic, osteogenic, and chondrogenic lineages, then evaluated by specific staining (Oil red O, von Kossa, and Alcian Blue staining, respectively) and analyzed for lineage specific markers by RT-PCR. All cell types were positive for alkaline phosphatase (AP) activity and early transcriptional factors (Oct3/4 and Sox2) were also positively detected. However, Nanog were not positively detected in all cells. Further, these MSCs were observed to differentiate into mesenchymal lineages, such as adipocytes (Oil red O staining), osteocytes (von Kossa staining), and chondrocytes (Alcian Blue staining) by cell specific staining. Lineage-specific genes (osteocyte; osteonectin and Runx2, adipocytes; PRAR-${\gamma}2$, FABP and LEP, and chondrocytes; collagen type-2 and Sox9) were also detected in all cells. In this study, we successfully established synovial fluid derived mesenchymal stem cells from female and male dogs, and determined their basic biological properties and differentiation ability. These results suggested that synovial fluid is a valuable stem cell source for cartilage regeneration therapy, and it is easily accessible from osteoarthritic knee.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Efficacy of Hataedock Treatments for Maintenance and Formation of Lipid Barrier in Obese NC/Nga Mice with Dermatophagoides Farinae-Induced Atopic Dermatitis

  • Kim, Hee-Yeon;Ahn, Sang-Hyun;Yang, In-Jun;Cheon, Jin-Hong;Kim, Kibong
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.74-85
    • /
    • 2018
  • Objectives: HTD treatment is a traditional preventive therapy for neonatal inflammatory diseases such as AD. The aim of this study was to investigate the efficacy of HTD treatments for the maintenance and formation of lipid barrier in Dermatophagoides farina-induced obese NC/Nga mice. Methods: 20 mg/kg of CRGR extracts as HTD treatments were orally administered to NC/Nga mice. To induce obesity, high fat diet was served. Dermatophagoides farina extracts was applied on the 4th-6th and 8th-10th weeks to induce AD-like skin lesions in NC/Nga mice. Changes of skin conditions in mice were observed by histochemistry and immunohistochemistry. Results: The results showed that HTD treatments effectively maintained and formed the lipid barrier. In the experimental groups, restorations of Lass2 expression and distributions of filaggrin, involucrin, loricrin, ASM, and LXR means that HTD treatments maintained and generated the lipid barrier. In the dermal papillae, HTD treatments reduced PKC production accompanied by epidermis damage. Furthermore, levels of IL-4, and STAT6 was low. HTD treatment may be effective for preventing inflammation induced by Th2-skewed condition by suppressing the main pathway of Th2 differentiation. Conclusions: HTD treatment alleviated the inflammatory damage in the skin tissues of the NC/Nga mice by maintaining the lipid barrier and suppressing Th2 differentiation.

Stem cell therapy in pain medicine

  • Han, Yong Hee;Kim, Kyung Hoon;Abdi, Salahadin;Kim, Tae Kyun
    • The Korean Journal of Pain
    • /
    • v.32 no.4
    • /
    • pp.245-255
    • /
    • 2019
  • Stem cells are attracting attention as a key element in future medicine, satisfying the desire to live a healthier life with the possibility that they can regenerate tissue damaged or degenerated by disease or aging. Stem cells are defined as undifferentiated cells that have the ability to replicate and differentiate themselves into various tissues cells. Stem cells, commonly encountered in clinical or preclinical stages, are largely classified into embryonic, adult, and induced pluripotent stem cells. Recently, stem cell transplantation has been frequently applied to the treatment of pain as an alternative or promising approach for the treatment of severe osteoarthritis, neuropathic pain, and intractable musculoskeletal pain which do not respond to conventional medicine. The main idea of applying stem cells to neuropathic pain is based on the ability of stem cells to release neurotrophic factors, along with providing a cellular source for replacing the injured neural cells, making them ideal candidates for modulating and possibly reversing intractable neuropathic pain. Even though various differentiation capacities of stem cells are reported, there is not enough knowledge and technique to control the differentiation into desired tissues in vivo. Even though the use of stem cells is still in the very early stages of clinical use and raises complicated ethical problems, the future of stem cells therapies is very bright with the help of accumulating evidence and technology.

Investigation of the effect of Lacca Sinica Exsiccata water extract on myoblast differentiation (건칠(乾漆) 열수 추출물이 근원세포의 근분화에 미치는 영향)

  • Lee, Sangsoo;Kim, Eun-Mi;Cho, Namjoon;Han, Hyosang;Kim, Kee Kwang
    • The Korea Journal of Herbology
    • /
    • v.35 no.3
    • /
    • pp.9-16
    • /
    • 2020
  • Objectives : Sarcopenia is a disease that leads to a decrease in skeletal muscle, and the importance of prevention and treatment thereof is increasing in an aging society. However, there is a definite limitation of exercise therapy for sarcopenia, and thus, there is an urgent need for a pharmacologic research to the treatment of sarcopenia. Methods : 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to confirm the antioxidant efficacy of water extract of Lacca Sinica Exsiccata (WELSE). To determine the effect of WELSE on myoblast activity, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was performed. To confirm the effect of WELSE on the differentiation of myoblast into myotubes, protein expression levels of myosin heavy chain 3 (Myh3) and paired box 3/7 (pax3/7) were confirmed by immunoblot analysis. In addition, immunofluorescence microscopy was performed to confirm the effect on myotube formation of WELSE. Results : It was confirmed that WELSE had high antioxidant activity and showed no cytotoxicity to myoblast up to 200 ㎍/㎖ concentration. Myoblast was treated with WELSE at a concentration of 100 ㎍/㎖ and differentiated for 5 days. The expression of Myh3, which forms myotubes, was promoted and the morphology of myotubes was changed and Increasing the thickness. Conclusions : In this paper, we confirmed the excellent antioxidant efficacy of WELSE and positive effects on muscle differentiation and myotube formation. These results suggest valuable as a material for pharmaceutical research on the prevention and treatment of sarcopenia.

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Effects of AEBSF on the Delay of Spontaneous Apoptosis and the Trans-Differentiation of Human Neutrophils into Dendritic Cells (Serine pretease 억제제인 4-(2-aminoethyl) benzensulfonylfluoride (AEBSF)에 의한 호중구의 자연 세포사멸의 지연과 수지상 세포로의 전이분화 연구)

  • Park, Hae-Young;Kwak, Jong-Young
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.948-955
    • /
    • 2007
  • Neutrophils play a key role as a first line of defense and are known to acquire the characteristics of dendritic cells (DCs) under the appropriate conditions. The spontaneous apoptosis of neutrophils was delayed by treatment with 4-(2-aminoethyl) benzensulfonylfluoride (AEBSF), a serine protease inhibitor. AEBSF inhibited both caspase-3 and serine protease activities, whereas ZVAD-fmk, a pancaspase inhibitor, inhibited only caspase-3 activity. The life span of neutrophils was prolonged up to 5 days by AEBSF in the presence or absence of granulocyte macrophage colony stimulating factor(CM-CSF). DC surface markers, such as CD80, CD83, and MHC class ll were not expressed on neutrophils treated with AEBSF alone. CM-CSF failed to prolong the survival time of neutrophils up to3 days but increased the expression levels of DC markers on neutrophils in the presence of AEBSF. Expression levels of DC markers were the highest on neutrophils treated with CM-CSF and AEBSF for 3 days. AEBSF and CM-CSF-treated neutrophils stimulated proliferation of T cells in the presence of a superantigen, Staphylococcal enterotoxin B (SEB) but produced $interferon-{\gamma}$ ($IFN{\gamma}$) in the absence of SEB. These results suggest that the inhibition of serine protease activity prolonged the life span of human neutrophils and combined treatment of neukophils with CM-CSF and serine protease inhibitor induced differentiation of neutrophils into DC-like cells.

CD206+ dendritic cells might be associated with Heat-pattern and induced regulatory T cells after treatment with bee venom

  • Jung, Woo-Sang;Kwon, Seungwon;Yang, Jung Yun;Jin, Chul;Cho, Seung-Yeon;Park, Seong-Uk;Moon, Sang-Kwan;Park, Jung-Mi;Ko, Chang-Nam;Bae, Hyunsu;Cho, Ki-Ho
    • The Journal of Korean Medicine
    • /
    • v.43 no.2
    • /
    • pp.1-7
    • /
    • 2022
  • Objectives: Bee venom (BV) is a widely used therapy in Traditional East Asian Medicine (TEAM). We previously reported that BV was clinically effective for treating Parkinson's disease, that phospholipase A2 (PLA2) was the main component of BV, and that it induced regulatory T cells (Tregs) by binding CD206 on dendritic cells (DCs). Therefore, we aimed to reconfirm our findings in human blood samples and investigate the relationship between CD206+ DCs and clinical syndrome differentiation in TEAM. Methods: We surveyed 100 subjects with questionnaires on cold-heat patternization and obtained their blood samples. The obtained human peripheral blood monocytes (hPBMCs) were washed with phosphate-buffered saline (PBS). After resuspension with ex vivo media, numbers of cells were counted. Tregs were counted after culturing the samples in a 37℃ CO2 incubator for 72 h. Results: We divided the subjects into a relatively high CD206+ group or a relatively low CD206+ group. The heat factor scores of high CD206+ group were significantly higher than that of low CD206+ group (high vs low: 239.2 ± 54.1 vs 208.4 ± 55.1, p=0.023). After culturing with PLA2, Tregs increased in the high CD206+ group but decreased in the low CD206+ group. Conclusion: In this study, we reconfirm that CD206+ DCs induced Treg differentiation by incubating human blood samples with PLA2 and that they showed an association with syndrome differentiation, especially with heat patterns, in TEAM. A heat pattern in TEAM might be one indication for PLA2 therapy because its score was elevated in the high CD206+ group.