• 제목/요약/키워드: differential thermal analysis

검색결과 676건 처리시간 0.026초

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

Numerical analysis of FGM plates with variable thickness subjected to thermal buckling

  • Bouguenina, Otbi;Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.679-695
    • /
    • 2015
  • A numerical solution using finite difference method to evaluate the thermal buckling of simply supported FGM plate with variable thickness is presented in this research. First, the governing differential equation of thermal stability under uniform temperature through the plate thickness is derived. Then, the governing equation has been solved using finite difference method. After validating the presented numerical method with the analytical solution, the finite difference formulation has been extended in order to include variable thickness. The accuracy of the finite difference method for variable thickness plate has been also compared with the literature where a good agreement has been found. Furthermore, a parametric study has been conducted to analyze the effect of material and geometric parameters on the thermal buckling resistance of the FGM plates. It was found that the thickness variation affects isotropic plates a bit more than FGM plates.

시차주사열량측정법에 의한 니켈기 초내열 합금의 열분석 (Thermal Analysis of Nickel-Base Superalloys by Differential Scanning Calorimetry)

  • 윤지현;오준협;김홍규;윤존도
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.235-240
    • /
    • 2016
  • Appropriate thermo-mechanical properties of nickel-based superalloys are achieved by heat treatment, which induces precipitation and solid solution hardening; thus, information on the temperature ranges of precipitation and dissolution of the precipitates is essential for the determination of the heat treatment condition. In this study, thermal analyses of nickel-based superalloys were performed by differential scanning calorimetry method under conditions of various heating rates of 5, 10, 20, or 40K/min in a temperature range of 298~1573K. Precipitation and dissolution temperatures were determined by measuring peak temperatures, constructing trend lines, and extrapolating those lines to the zero heating rate to find the exact temperature under isothermal condition. Determined temperatures for the precipitation reactions were 813, 952, and 1062K. Determined onset, peak, and offset temperatures of the first dissolution reaction were 1302, 1388, and 1406K, respectively, and those values of the second dissolution reaction were 1405, 1414, and 1462K. Determined solvus temperature was 1462K. The study showed that it was possible to use a simple method to obtain accurate phase transition temperatures under isothermal condition.

폐폴리우레탄의 열적 산화분해에 대한 속도론적 연구 (A Kinetic Study of Thermal-Oxidative Decomposition of Waste Polyurethane)

  • 전현철;오세천;이해평;김희택
    • 공업화학
    • /
    • 제17권3호
    • /
    • pp.296-302
    • /
    • 2006
  • 산소농도에 따른 폐폴리우레탄의 열적 산화분해에 관한 속도론적 연구를 $10{\sim}50^{\circ}C/min$ 사이의 여러 가열속도에서 비등온 질량감소 기술을 이용하여 수행하였다. 폐폴리우레탄의 열적 산화분해를 묘사하기 위하여 Arrhenius식에 근거한 미분법과 적분법을 이용하여 산소농도에 대한 영향을 고려할 수 있는 속도론 모델을 제시하였으며 활성화 에너지 및 반응차수 그리고 pre-exponential 인자와 같은 속도 상수들에 대한 정보를 얻기 위하여 본 연구에서 제시한 속도론 해석 방법을 이용하여 질량감소 곡선 및 그 미분값을 해석하였다. 본 연구로부터 산소농도에 대한 반응차수는 모두 음의 값을 나타내었으며 활성화 에너지는 산소농도가 증가함에 따라 감소함을 확인할 수 있었다. 또한 단일 가열속도에서의 실험값을 이용하는 적분법의 경우 가열속도에 따라 반응속도 상수의 값이 변화함을 알 수 있었다. 따라서 여러 가열속도에서의 실험값을 이용하는 미분법이 폐폴리우레탄의 열적 산화분해 반응을 보다 효율적으로 나타내고 있는 것으로 판단된다.

전방향족 폴리에스터 열경화성 액정의 합성과 특성 (Synthesis and Characterization of Wholly Aromatic Polyester Liquid Crystalline Thermosets)

  • 문현곤;정명섭;장진해
    • 폴리머
    • /
    • 제36권1호
    • /
    • pp.9-15
    • /
    • 2012
  • 용융법을 이용해서 말단에 가교 반응이 가능한 메틸 말레이미드(methyl maleimide)기를 가진 전방향족 에스터 결합의 액정(liquid crystal, LC)을 합성하였고, 합성된 LC를 이용해서 적당한 열처리 과정을 통해 열경화성 액정(liquid crystalline thermoset, LCT) 필름을 제조하였다. 합성된 LC 및 LCT 필름은 FTIR(Fourier transform infrared) 분광기, WAXD(wide angle X-ray diffraction), DSC(differential scanning calorimetry), TGA(thermogravimetric analysis), TMA(thermomechanical analysis), 그리고 가열판이 장착된 편광 현미경으로 특성 분석을 하였다. 유리전이온도($T_g$)와 열팽창 계수는 주사슬 구조의 메소겐에 의해 강한 영향을 받는 것으로 확인되었고, $para$-로 치환된 비페닐구조를 가진 LCT 필름이 가장 좋은 열적 성질을 보여 주었다.

Nonlinear static analysis of smart beams under transverse loads and thermal-electrical environments

  • Ali, Hayder A.K.;Al-Toki, Mouayed H.Z.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • 제7권2호
    • /
    • pp.99-112
    • /
    • 2022
  • This research has been devoted to examine nonlinear static bending analysis of smart beams with nano dimension exposed to thermal environment. The beam elastic properties are corresponding to piezo-magnetic material of different compositions. The large deflection analysis of the beam has been performed assuming that the beam is exposed to transverse uniform pressure. Based on the rule of Hamilton, the governing equations have been derived for a nonlocal thin beam and solved using differential quadrature method. Temperature variation effect on nonlinear deflection of the smart beams has been studied. Also, the beam deflection is shown to be affected by electric voltage, magnetic intensity and material composition.

Thermal effect on axisymmetric bending of functionally graded circular and annular plates using DQM

  • Hamzehkolaei, N. Safaeian;Malekzadeh, P.;Vaseghi, J.
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.341-358
    • /
    • 2011
  • This paper presents the effects of thermal environment and temperature-dependence of the material properties on axisymmetric bending of functionally graded (FG) circular and annular plates. The material properties are assumed to be temperature-dependent and graded in the thickness direction. In order to accurately evaluate the effect of thermal environment, the initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Governing equations and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the virtual work principle based on the elasticity theory. The differential quadrature method (DQM) as an efficient and robust numerical tool is used to obtain the initial thermal stresses and response of the plate. Comparison studies with some available results for FG plates are performed. The influences of temperature rise, temperature-dependence of material properties, material graded index and different geometrical parameters are carried out.

등전환 방법을 이용한 고에너지 물질의 노화 효과 예측 (Characterization of energetic meterials using thermal calorimetry)

  • 김유천;오주영;;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.547-553
    • /
    • 2017
  • Differential Scanning Calorimetry(DSC)를 이용하여 파이로점화장치에 사용되는 세 가지 고에너지 물질의 열분석 실험을 수행하였다. DSC 실험 데이터를 이용하여 고에너지 물질의 반응속도식을 추출해내는 이론적 방법을 제안하고 반응속도식 추출을 수행하였다. DSC 실험 결과는 Friedman 등전환법으로 분석되었다. 질량분율에 따른 활성화에너지와 빈도인자를 추출해 내어 반응속도식을 완성하였다. 추출된 반응속도식은 고에너지 물질의 화학반응과정을 몇 단계의 주요단계로 가정하는 형태가 아닌 전체 화학 반응 과정을 나타내는 형태를 갖는다. 이는 기존의 열분석 실험을 통해 추출되는 화학반응속도식 형태에 비해 이론적 측면과 정확성 측면에서 상당한 장점을 갖는다. 도출된 반응속도식을 이용하여 실제 추진기관에 운용되는 세 가지 고에너지 물질의 성능변화를 20년에 대하여 예측하였다.

  • PDF

MOS형 전계효과 트랜지스터 차동증폭기에 관한 소고 (An analytical consideration of the MOS type field-effect transistor differential amplifier)

  • 정만영
    • 전기의세계
    • /
    • 제14권6호
    • /
    • pp.1-7
    • /
    • 1965
  • This paper provides the analysis of the differential amplifier using the insulated gate, metala-oxide-semiconductor type field-effect-transistor(MOS FET), for its active element and the power drift of the amplifer. From these analytical considerations some design standardsn were found for the MOS FET differential amplifier available for the measurement of the very small current (pico-ampare range). A differential amplifier was designed and built in the view of above considerations. Its equivalent input gate voltages of the thermal drift and the power drift were 0.57mV/.deg. C in the range 25.deg. C-60.deg. C and 8.8mV/V in the range of 20% drift of its orginal value, respectively.

  • PDF

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.