• Title/Summary/Keyword: differential power analysis

Search Result 420, Processing Time 0.031 seconds

Random Point Blinding Methods for Koblitz Curve Cryptosystem

  • Baek, Yoo-Jin
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.362-369
    • /
    • 2010
  • While the elliptic curve cryptosystem (ECC) is getting more popular in securing numerous systems, implementations without consideration for side-channel attacks are susceptible to critical information leakage. This paper proposes new power attack countermeasures for ECC over Koblitz curves. Based on some special properties of Koblitz curves, the proposed methods randomize the involved elliptic curve points in a highly regular manner so the resulting scalar multiplication algorithms can defeat the simple power analysis attack and the differential power analysis attack simultaneously. Compared with the previous countermeasures, the new methods are also noticeable in terms of computational cost.

CKGS: A Way Of Compressed Key Guessing Space to Reduce Ghost Peaks

  • Li, Di;Li, Lang;Ou, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.1047-1062
    • /
    • 2022
  • Differential power analysis (DPA) is disturbed by ghost peaks. There is a phenomenon that the mean absolute difference (MAD) value of the wrong key is higher than the correct key. We propose a compressed key guessing space (CKGS) scheme to solve this problem and analyze the AES algorithm. The DPA based on this scheme is named CKGS-DPA. Unlike traditional DPA, the CKGS-DPA uses two power leakage points for a combined attack. The first power leakage point is used to determine the key candidate interval, and the second is used for the final attack. First, we study the law of MAD values distribution when the attack point is AddRoundKey and explain why this point is not suitable for DPA. According to this law, we modify the selection function to change the distribution of MAD values. Then a key-related value screening algorithm is proposed to obtain key information. Finally, we construct two key candidate intervals of size 16 and reduce the key guessing space of the SubBytes attack from 256 to 32. Simulation experimental results show that CKGS-DPA reduces the power traces demand by 25% compared with DPA. Experiments performed on the ASCAD dataset show that CKGS-DPA reduces the power traces demand by at least 41% compared with DPA.

Design of A 3V CMOS Lowpass Filter Using the Improved Continuous-Time Fully-Differential Current-Mode Integrator (개선된 연속시간 Fully-Differential 전류모드 적분기를 이용한 3V CMOS 저역필터 설계)

  • 최규훈;방준호;조성익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.685-695
    • /
    • 1997
  • In this paper, a new CMOS continuous-time fully-differential current-mode integrator is proposed as a basic building block of the low-voltage high frequency current-mode active filter. The proposed integrator is composed of the CMOS complementary circuit which can extend transconductance of an integrator. Therefore, the unity gain frequency which is determined by a small-signal transconductance and a MOSFET gate capacitance can be expanded by the complementary transconductance of the proposed integrator. And also the magnitude of pole and zero are increased. The unity gain frequency of the proposed integrator is increased about two times larger than that of the conventional continuous-time fully-differential integrator with NMOS-gm. These results are verified by the small signal analysis and the SPICE simulation. As an application circuit of the proposed fully-differential current-mode integrator, the three-pole Chebyshev lowpass filter is designed using 0.8.$\mu$m CMOS processing parameters. SPICE simulation predicts a 3-dB bandwidth of 148MHz and power dissipation of 4.3mW/pole for the three-pole filter with 3-V power supply.

  • PDF

Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.663-686
    • /
    • 2014
  • This paper deals with free vibration analysis of bidirectional functionally graded annular plates resting on a two-parameter elastic foundation. The formulations are based on the three-dimensional elasticity theory. This study presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 2-D functionally graded materials that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. Various material profiles along the thickness and in the in-plane directions are illustrated by using the 2-D power-law distribution. The effective material properties at a point are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The fast rate of convergence of the method is shown and the results are compared against existing results in literature. Some new results for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded materials.

Free vibration analysis of a rotating non-uniform functionally graded beam

  • Ebrahimi, Farzad;Dashti, Samaneh
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1279-1298
    • /
    • 2015
  • In this paper, free vibration characteristics of a rotating double tapered functionally graded beam is investigated. Material properties of the beam vary continuously through thickness direction according to the power-law distribution of the volume fraction of the constituents. The governing differential equations of motion are derived using the Hamilton's principle and solved utilizing an efficient and semi-analytical technique called the Differential Transform Method (DTM). Several important aspects such as taper ratios, rotational speed, hub radius, as well as the material volume fraction index which have impacts on natural frequencies of such beams are investigated and discussed in detail. Numerical results are tabulated in several tables and figures. In order to demonstrate the validity and accuracy of the current analysis, some of present results are compared with previous results in the literature and an excellent agreement is observed. It is showed that the natural frequencies of an FG rotating double tapered beam can be obtained with high accuracy by using DTM. It is also observed that nondimensional rotational speed, height taper ratio, power-law exponent significantly affect the natural frequencies of the FG double tapered beam while the effects of hub radius and breadth taper ratio are negligible.

COSET OF A HYPERCOMPLEX NUMBER SYSTEM IN CLIFFORD ANALYSIS

  • KIM, JI EUN;SHON, KWANG HO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1721-1728
    • /
    • 2015
  • We give certain properties of elements in a coset group with hypercomplex numbers and research a monogenic function and a Clifford regular function with values in a coset group by defining differential operators. We give properties of those functions and a power of elements in a coset group with hypercomplex numbers.

Performance Analysis of MU-MIMO employing differential Precoding (차등 선부호화 기법을 적용한 MU-MIMO 시스템의 성능분석)

  • Gu, Qing;Park, Noe-Yoon;Li, Xun;Kim, Young-Ju
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, the sum-rate and BER performances of MU-MIMO system employing quantized differential feedback technique are analyzed over temporrally correlated channels. Several differential codebooks are assumed in the analysis such as quasi-diagonal codebook, spherical cap codebook, and differential equal gain codebook. The simulation results indicates that the system employing quantized differential feedback technique provides significant performance improvement. The performance improved 0.6bps/Hz at least in terms of sum-rate, and 4dB power gain is provided in terms of average BER.

A Study on Performance Improvement of Non-Profiling Based Power Analysis Attack against CRYSTALS-Dilithium (CRYSTALS-Dilithium 대상 비프로파일링 기반 전력 분석 공격 성능 개선 연구)

  • Sechang Jang;Minjong Lee;Hyoju Kang;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • The National Institute of Standards and Technology (NIST), which is working on the Post-Quantum Cryptography (PQC) standardization project, announced four algorithms that have been finalized for standardization. In this paper, we demonstrate through experiments that private keys can be exposed by Correlation Power Analysis (CPA) and Differential Deep Learning Analysis (DDLA) attacks on polynomial coefficient-wise multiplication algorithms that operate in the process of generating signatures using CRYSTALS-Dilithium algorithm. As a result of the experiment on ARM-Cortex-M4, we succeeded in recovering the private key coefficient using CPA or DDLA attacks. In particular, when StandardScaler preprocessing and continuous wavelet transform applied power traces were used in the DDLA attack, the minimum number of power traces required for attacks is reduced and the Normalized Maximum Margines (NMM) value increased by about 3 times. Conseqently, the proposed methods significantly improves the attack performance.

Transition of voltage-differential current under internal fault on power transformer (전력용 변압기 내부고장시 전압-차전류의 변화에 관한 연구)

  • Park, Jae-Sae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.92-95
    • /
    • 2004
  • Power transformer is an important apparatus in transforming and delivering the power in a power system. It shows less accident ratio than other system apparatus, but once the accident occurs, it causes long-term operation stoppage and economic loss. It brings high bad spillover effects. Therefore, the role of protective relaying, which is to prevent internal fault a power transformer is highly important. This study proposed advanced algorithm that can clearly determine internal fault of the power transformer and magnetizing inrush, through numerical analysis by using the terminal voltage and input output current.

  • PDF

A Study of Analysis of Fault Data in AC Electrical Railway Power System Based on COMTRADE Using PSCAD/EMTDC (PSCAD/EMTDC를 활용한 COMTRADE 기반의 교류철도 급전계통 사고 데이터 분석에 관한 연구)

  • Lee, Ji-Hye;Min, Myung-Hwan;An, Tae-Pung;Lee, Byeong-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1542-1548
    • /
    • 2018
  • When any faults occurred in electrical railway system, operators need to analysis it quickly and accurately. Existing COMTRADE based analysis tools are not enough to analysis faults occurred in electrical railway system. In this paper, it presents some functions to fault analysis for electrical railway system based on fault data formatted COMTRADE. These functions are implemented in PSCAD/EMTDC and it can be shown that analyzed results against actual electrical fault cases which were occurred in the electrical railway power system.