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While the elliptic curve cryptosystem (ECC) is getting 
more popular in securing numerous systems, 
implementations without consideration for side-channel 
attacks are susceptible to critical information leakage. 
This paper proposes new power attack countermeasures 
for ECC over Koblitz curves. Based on some special 
properties of Koblitz curves, the proposed methods 
randomize the involved elliptic curve points in a highly 
regular manner so the resulting scalar multiplication 
algorithms can defeat the simple power analysis attack 
and the differential power analysis attack simultaneously. 
Compared with the previous countermeasures, the new 
methods are also noticeable in terms of computational cost. 
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I. Introduction 

Due to its shorter key size and efficient realizations, the 
elliptic curve cryptosystem (ECC) [1], [2] is getting more 
popular in securing numerous practical systems. Particularly, 
while some applications with low power and/or low size such 
as radio frequency identification (RFID) strongly require some 
cryptographic mechanisms, the commonly-deployed public 
key cryptosystems such as RSA may not be adequate for such 
applications due to the tiny area available for cryptography, and 
ECC is more promising to such applications [3]. Moreover, 
since very efficient scalar multiplication algorithms are well 
known [4], [5], ECC over Koblitz curves is expected to be 
suitable for applications with low area but high security 
requirements. However, ECC implementations without 
consideration for the side-channel attacks are known to be 
highly susceptible to critical information leakage. 

For {0,1}a ∈ , the Koblitz curve Ea, the main concern of 
this paper is the elliptic curve which is defined by the equation 

2 3 2 1y xy x ax+ = + + over a binary field. The cryptographic 
use of Koblitz curves was first introduced in [6] and is known 
to offer significant advantage in the processing time over 
ordinary elliptic curves. In fact, the National Institute of 
Standards and Technology (NIST) included Koblitz curves in 
its recommended curves [7]. This paper proposes efficient new 
power attack countermeasures for ECC over such Koblitz 
curves. 

Conceptually, an attacker might retrieve some secret 
information from the power consumption profiling of 
cryptographic devices [8], unless the devices are designed for 
addressing adequate countermeasures. Some of these 
remarkable techniques include the simple power analysis 
attack (SPA) and the differential power analysis attack (DPA) 
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[9], which are suitably applicable to ECC realizations. 
Fortunately, many researchers proposed elegant 
countermeasures against these power attacks [9], [10]-[14], and 
we briefly review some of those which are related to our 
proposals.  

First, [12] proposed new random point blinding methods by 
using the simple observation that 11 2 (2 2 1)n n−= − + + +  
for any positive integer n. Thus, for 1

0
2n i

ii
d d−

=
= ∈ Ζ∑  and 

two elliptic curve (EC) points P and R, dP+R can be computed 
as 1

0
2 2 ( )nn i

ii
dP R R d P R−

=
+ = + −∑ . While their methods 

are directly applicable to Koblitz curves as well, this paper uses 
the specific properties of Koblitz curves to get more efficient 
power attack countermeasures. Second, [10] proposed several 
power attack countermeasures specifically applicable for 
Koblitz curve cryptosystems, which include the SPA 
countermeasures and the DPA countermeasures. The first SPA 
countermeasure, which can be considered as a variant for 
Koblitz curves of the well known double-and-add always 
method [9], may, however, be vulnerable to the safe-error 
attack [15], which is mainly due to its dummy operations’ 
usage. The second SPA countermeasure adopted similar 
properties of Koblitz curves as the new methods. However, it is 
only for preventing SPA, while newly proposed methods can 
defeat DPA as well. The first and third DPA countermeasures 
are to randomize the scalar, so they are not directly comparable 
with our proposals since the new methods mainly concern 
randomizing EC points. Finally, the second DPA 
countermeasure randomizes a point P by τr(P) for the 
Frobenius map τ and a randomly chosen r. Hence, it can 
introduce only a very small amount of randomness since  
τm=1 over 

2
( )maE F . 

This paper is organized as follows. In section II, we briefly 
overview some basic notations and terminologies of elliptic 
curves and Koblitz curves. We continue with the basics in 
section III by going through various power attack methods. In 
section IV, we present new countermeasures. We remark that 
the new countermeasures make use of the following special 
properties of the Koblitz curve 

2
( )maE F  and the Frobenius 

map τ which is defined by 2 2( , ) ( , )x y x yτ = : 

1. For any integer d, there is an efficient algorithm of finding 
{0,1}id ∈  such that 1

0

m a i
ii

d d τ+ −

=
= ∑  over the main 

subgroup of 
2

( )maE F .  
2. 1 1 0mτ τ− + + + = over the main subgroup of

2
( )maE F . 

3. 1( 1)( 1) 1l lτ τ τ τ−− − + + + = for any positive integer l. 

In the same section, we also give the detailed analysis of the 
computational cost and the security aspect of the new  
countermeasures. In particular, it is shown that, compared with 

the previous ones, new countermeasures are remarkable in 
terms of computational cost and strong resistance to various 
power attack methods including SPA and DPA. For example, 
securely computing dP over 

2
( )maE F  in the L-R fashion 

spends at most m Frobenius-map computations (which can be 
considered to be free if a normal basis is used for 

2mF ) and  
m+2 point additions for a binary version and at most 
2 / 2w m w+ +⎢ ⎥⎣ ⎦  point additions and 2 / 1w m w+ +⎢ ⎥⎣ ⎦      
τ-computations for a window version of width w. On the 
contrary, the method in [12] takes about m point doublings and 
2 /w m w+ ⎢ ⎥⎣ ⎦ point additions and the second SPA 
countermeasure in [10] spends m + 1 point additions, 1 point 
doubling and m τ-computations without any measure against 
DPA. 

II. Elliptic Curves 

For a power q of a prime p, let Fq and qF denote the finite 
field with q elements and its algebraic closure, respectively. An 
elliptic curve E over Fq consists of points ( , ) q qx y F F∈ ×  
which satisfy the following nonsingular Weierstrass equation: 

2 3 2
1 3 2 4 6 , ,i qy a xy a y x a x a x a a F+ + = + + + ∈  

plus the point at infinity O. For any extension field K of Fq in 
qF , E(K) is defined as 

( ) {( , ) | , } { }.E K x y E x y K O= ∈ ∈ ∪  

It is well known that E forms an Abelian group under a special 
addition rule [16]. 

One of the fundamental operations in ECC is the scalar 
multiplication for points. For a positive integer k and an elliptic 
curve point P, the scalar multiplication kP is the operation of 
adding k copies of P and (-k)P is defined to be k(-P). 

1. Koblitz Curves 

For {0,1},a ∈  the Koblitz curve Ea is the elliptic curve 
defined as 2 3 2 1y xy x ax+ = + +  over a binary field. For Ea 
to be used for public-key cryptosystems, the group 

2
( )maE F  

should be chosen so that its order is a product of a large prime r 
and a small integer f. In this setting, 

2
( )maE F  is called a 

group of very nearly prime order if r > 2 and f = 2 or 4, and the 
subgroup of order r is called the main subgroup of

2
( )maE F [4]. 

The Frobenius map τ over 
2

( )maE F  is defined as 
2 2( , ) ( , )x y x yτ = . If a normal basis is used for the field 

2mF , 
the computation of τ just amounts to two 1-bit left-rotations, 
which can be considered to be free. 

One of the most interesting features of Koblitz curve 
cryptosystems is that scalars can be efficiently represented as a 
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τ-adic non-adjacent form (NAF). More precisely, for an integer 
d, there is an efficient algorithm of finding { 1,0,1}id ∈ −  so 
that 1 0i id d + =  for each i and 1

0

m a i
ii

d d τ+ −

=
= ∑  over the 

main subgroup of 
2

( )maE F  [4], [5]. While the τ-adic NAF 
has the special advantage over binary τ-adic representations in 
that its Hamming weight density is lower than that of binary 
representations, the new countermeasures are using binary   
τ-adic forms since they do not get any benefit from the lower 
Hamming weight density. Because we could not find 
algorithms generating such binary τ-adic forms in the literatures, 
we add a brief discussion on the subject. 

First, consider the following algorithm of converting an 
integer into a binary τ-adic form. 

Algorithm 1. Generating a binary τ-adic form 
Input: an integer d. 
Output: {0,1}id ∈  such that i

id d τ= ∑  over the main subgroup 
of 

2
( )maE F . 

1. Set 0 1c c dτ+ ←  (mod ( 1) /( 1)mτ τ− − ) using Routine 74 in 
[4]. 

2. 1( 1) .aμ −← −  
3. 0.i ←  
4. While 0 0c ≠  or 1 0c ≠ , do 

a. 0 mod 2,id c←  
b. 0 1 1 0 0( , ) ( ( ) / 2, ( ) / 2).i ic c c c d c dμ← + − − −  

To justify algorithm 1, we have to prove the following: 
1. i

id d τ= ∑  over the main subgroup of 
2

( )maE F . 
2. It terminates in finite steps. More precisely, the length of 

its output sequence 0 1( , , )d d  is at most m + a. 
To verify the first claim, we just refer to the following lemma 

[4]. 

Lemma 1. In Z[τ], which is satisfying 2 1( 1) 2 0aτ τ−− − + = , 
the following identity holds: 

1
0 1 1 0 1( ) 2 ( ( 1) ) .ad d d d dτ τ τ−+ = − + + −  

To prove that algorithm 1 terminates in finite steps, we first 
assume that steps 4a and 4b are applied to 0 1 [ ]c c τ τ+ ∈Ζ  to 
get 0 1 1 0 0( ', ') ( ( )/ 2, ( ) / 2).i ic c c c d c dμ= + − − −  Then, it can 
easily be verified that the norm of 0 1' 'c c τ+  is strictly less 
than that of 0 1c c τ+ , unless 0 1( , ) ( 1,0)c c = − , in which case 
algorithm 1 produces the identity 21 1 τ τ− = + +  over 

0 2
( )mE F  and 31 1 τ τ− = + +  over 1 2

( )mE F . Finally, the fact 
that the resulting τ-adic representation length of d is at most 
m+a can similarly be proved as for the τ-adic NAF [4]. This 
completes the justification of algorithm 1. 

For the scalar multiplication algorithm to resist to power 
attacks, appropriate measures must also be addressed for all its 

subroutines including the scalar recoding like algorithm 1 [17]. 
Particularly, algorithm 1 must be secure to SPA since it is most 
likely to be applied once for the given scalar. However, there 
may be two SPA vulnerabilities in the algorithm. First, the 
routine in step 1 may behave irregularly for the inputs. But, this 
irregularity can be prevented using, for example, the side-
channel atomicity method in [11]. Second, algorithm 1 uses an 
input-related conditional statement in step 4. However, since 
the length of the output sequence is at most m + a according to 
the arguments above, step 4 can be re-written as  

4'  For i=0 to m, do, 

which makes the algorithm behave regularly. 
The usual left-to-right (L-R) and right-to-left (R-L) scalar 

multiplication algorithms can easily be translated to the τ-adic 
forms. That is, it is enough to replace the point doubling map 
with the Frobenius map. 

We close this section by referring the following proposition 
from [4]. 

 
Proposition. Suppose that 

2
( )maE F  is a group of very 

nearly prime order f r⋅ . Then, for 
2

( )maP E F∈ , 
1) P is in the main subgroup of 

2
( )maE F  if and only if 

P fQ=  for some 
2

( )maQ E F∈ , 
2) ( )m P Pτ =  for any 

2
( )maP E F∈ , 

3) 1( 1)( )m P Oτ τ− + + + =  for any P in the main 
subgroup of 

2
( )maE F . 

III. Power Attack 

The power attack, which was first introduced by Kocher and 
others [8], attempts to recover some secret information from 
power consumption curves. Many kinds of power attack 
methods against ECC have been proposed so far. 

The SPA [9] observes one or a few power signals of 
cryptographic operations, from which it tries to distinguish 
between various cryptographic primitives. Accordingly, the 
following regular τ-adic scalar multiplication algorithms for 
Koblitz curve cryptosystems may be used as its 
countermeasure.  

 
Algorithm 2. Regular τ-adic binary L-R method for 

2
( )maE F  

Input: 
0

,m i
ii

d d τ
=

= ∑ P in the main subgroup of 
2

( )maE F . 
Output: 

2
( )madP E F∈ . 

1. [0]T P← , [1] 2 ;T P←  
2. [ ].mS T d←  
3. For 1i m= − to 0, do 

a. ( ) [ ].iS S T dτ← +  
4. Return S–P. 
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Algorithm 3. Regular τ-adic binary R-L method for 
2

( )maE F  
Input: 

0

m i
ii

d d τ
=

= ∑ , P in the main subgroup of 
2

( )maE F . 

Output: 
2

( )madP E F∈ . 
1. [0] ,T P←  [1] 2 .T P←  
2. 0[ ].S T d←  
3. [0] ( [0])T Tτ← , [1] ( [1]).T Tτ←  
4. For i=1 to m–1, do 

a. [ ],iS S T d← +  
b. [0] ( [0])T Tτ← , [1] ( [1]).T Tτ←  

5. Return [ ] [0]mS T d T+ − . 

 
Note that another regular τ-adic L-R scalar multiplication 

algorithm for Koblitz curves was proposed in [10]. However, 
since the algorithm is a variant of the well known double-and-
add always method [9] in nature, it may be vulnerable to the 
safe error attack due to its dummy operations’ usage [15]. On 
the contrary, since all the operations in algorithm 2 and 3 are 
not dummy operations, the vulnerability above does not 
concern their security. 

In algorithm 3, T[0] will have the value ( )m P Pτ =  after 
step 4, which accounts for the subtraction by T[0] in step 5. 

Justification of both algorithms comes from the  
proposition in section II, which gives the identity: for 

0

m i
ii

d d τ
=

= ∑  

 
0 0

( ) ( 1) ( ),m mi i
ii i

dP P dP P d Pτ τ
= =

+ = + = +∑ ∑     (1) 

for P in the main subgroup of 
2

( )maE F .  
Since additions are always performed in step 3a or 4a, both 

algorithms are resistant to SPA. Their computational cost can 
be summarized at most m + 1 point additions, 1 point doubling 
and m τ-computations for algorithm 2; and at most  m + 2 
point additions, 1 point doubling and 2m τ-computations for 
algorithm 3. The newly proposed methods also use the similar 
properties in (1), but the properties are applied to a random 
point, not to the base point. 

Remark. Algorithm 2 and 3 were described in a general 
setting for a. However, if we only consider the case of a=0, we 
can get more efficient versions of the algorithms. That is, if a=0, 
then the τ-adic representation size of d is at most m. Thus,  
instead of (1), we can use the relation 1

0
( 1) ( )m i

ii
dP d Pτ−

=
= +∑ . 

 The resulting algorithms can then save 1 point addition for 
algorithm 2 (since we can skip the subtraction in step 4) and  
2 point additions and τ-computations for algorithm 3 (since  
we can skip step 4 for i = m – 1 and the subtraction by T[0] in 
step 5). 

The Montgomery method [13] and the side-channel 
atomicity method [11] can also be used as SPA 

countermeasures. 
The DPA [9] collects a large number of power curves and 

uses advanced signal-processing techniques to get some useful 
information from the curves. As countermeasures, the random 
exponent blinding, the random point blinding, and the random 
coordinate blinding may be used for ECC [9]. The new 
countermeasures mainly deal with the random point blinding 
method to defeat DPA. The higher-order DPA [18], which 
investigates the statistical relation between several sample 
points in power curves, may be another big threat to 
cryptosystem’s implementations. However, combining the 
point blinding and the scalar blinding appropriately may help 
resist the attack. 

The doubling attack [19] is based on the hypothesis that an 
attacker can distinguish the equality between two 
intermediate results of two distinct cryptographic operations 
by analyzing their power curves. Also, it can be defeated if a 
random point blinding technique is used in an appropriate 
manner. 

The refined power-analysis attack (RPA) [20] chooses a 
special point such that one of its coordinates is equal to 0 and 
then inputs into the target device the point which is equal to the 
special point when it is multiplied by a specific scalar. The 
zero-value point attack (ZPA) [21] refines RPA and uses the 
zero-value register, not the zero-value coordinate for the attack. 
Both RPA and ZPA work if the intermediate results of 
corresponding scalar multiplications can be correctly guessed. 
Hence, if an appropriate random point blinding technique is 
used, these attacks can be prevented. 

Finally, applied to the countermeasures in [14], the N-1 
attack can work only if the randomization factor doesn't vary 
during the computation, which is not the case for the new 
countermeasures. 

IV. New Power Attack Countermeasures for Koblitz 
Curve Cryptosystems 

For cryptographic use, the underlying group is preferred to 
have a prime order, so all the points in consideration are 
assumed to be contained in the main subgroup of 

2
( )maE F  

hereafter. 
Since new countermeasures inevitably require generating 

random elliptic curve points, we first address this issue. While 
generating random points over a prime field usually requires an 
expensive square-root finding algorithm (for example, if we are 
working in a prime field GF(p), computing g1/2, if any, 
corresponds to computing gk+1 if p is of the form p = 3k + 4 
[22]), it is not so expensive over binary fields. To be concrete, 
we present an exemplary algorithm of generating a random 
point on Koblitz curves in the following [22]. 
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Algorithm 4. Random point generation over Koblitz curves 
Input: 

2
( )maE F . 

Output: a random point ( )R O≠  in the main subgroup of 

2
( )maE F . 

1. Choose a non-zero random element 
2mx F∈ . 

2. 3 2 1.x axα ← + +  
3. If α=0, go to step 1. 
4. 2 .xβ α−←  
5. Find z for which 2z z β+ = , if any. If there is no such z, go to 

step 1. 
6. Set y = (z+µ)x for a random bit µ. 
7. Return R=(x, y). 
 

Note that the original algorithm in [22] outputs a random 
point in the group 

2
( )maE F , while algorithm 4 randomly 

generates a point in the main subgroup of 
2

( )maE F . 
Since the probability of having z for which z2 + z = β is about 

1/2 for a random field element β, algorithm 4 takes 4 field 
multiplications and 1.5 field inversions on average (and some 
field additions and squarings, which can be considered to be 
free if a normal basis is used for 

2mF ). Note that algorithm 4 is 
highly regular since the conditional statements in step 3 and 
step 5 are only for excluding some points as an output, and a 
solution z of the equation in step 5 can be found using a regular 
routine in [22]. In conclusion, algorithm 4 is highly resistant to 
SPA.  

Finally, the following lemma justifies algorithm 4. 
Lemma 2. If m is a prime number (which must be satisfied 

for the cryptographic use of 
2

( )maE F  [4]), then the output 
point (x, y) of algorithm 4 is contained in the main subgroup of 

2
( )maE F . 

Proof. Note that only O, (0,1), (1,0), (0,1) may be contained 
in the main subgroup of

2
( )maE F [4]. Now, since 0x ≠  by 

step 1, (0, 1) is excluded for the output. On the other hand, α =0 
in step 3 only if a=0 and x=1, since m is a prime number. Thus, 
(1, 0) and (1, 1) cannot be outputted as well.               

Another technique of generating random points on Koblitz 
curves can be found in [23], which combines the pre-computed 
random points in a specific way and also discusses the output 
probability distribution of the resulting random points.       

Finally, to blind the computation Q = dP by Q = d(P+R)–S, 
the authors of [9], [24] proposed to store an initial random point 
pair (R, S) with S = dR and to update the pair for later use by 
multiplying R and S by a small (random) scalar. However, the 
(random) scalar for the updating procedure must carefully be 
chosen to resist to some side-channel attacks [25]. Also, this 
method as well as the one in [23] requires some memory space 
for storing the pre-computed values, which is undesirable in 
some memory-constrained applications. 

1. L-R Versions 

For the L-R binary versions of new power attack 
countermeasures, we first observe the identity 

1( 1)( 1) 1l lτ τ τ τ−− − + + + =  for any positive integer l and 
represent

2
( )maR E F∈ as 1( ) ( 1)( ( ) ).l lR R R Rτ τ τ τ−= − + + + −  

Thus, for 
2

, ( )maP R E F∈  and 1

0
,l i

ii
d d τ−

=
= ∑  we have 

 
1

0
( ) ( ( ) ),

l
l i

i
i

dP R R d P R Rτ τ τ
−

=

+ = + − +∑       (2) 

and can obtain the following algorithm. 

Algorithm 5. 
Input: 1

0
,l i

ii
d d τ−

=
= ∑  

2
( )maP E F∈  

Output: 
2

( )madP E F∈  

1. Choose a random point ( )R O≠  using algorithm 4. 
2. [0] ( ), [1] [0] .T R R T T Pτ← − ← +  
3. .S R←  
4. For i=l–1 to 0, do 

a. ( ) [ ].iS S T dτ← +  
5. Return S–R. 

Algorithm 5 has a very similar structure with the methods in 
[12]. Actually, the only difference between them lies in the 
usage of the Frobenius map in algorithm 5 instead of the point 
doubling map in [12].  

Since it always performs additions in step 4a regardless of 
the scalar bit di, algorithm 5 defeats SPA. Also, its resistance to 
DPA, RPA, and ZPA comes from the randomization of the 
register S. That is, one cannot guess the intermediate values of 
S due to the randomization. So DPA, RPA, and ZPA can not be 
applied to the algorithm. 

The computational cost of algorithm 5 is at most l+3 point 
additions and l+1 τ-computations plus the effort of generating 
a random point R. Thus, compared with algorithm 2, algorithm 
5 can prevent both SPA and DPA, using only 3 additional point 
additions, one less point doubling, 2 additional τ-computations, 
and the effort for generating a random point. 

One advantage of algorithm 4 is that it can work for any   
τ-adic length of d. Hence, it can easily adopt scalar blinding 
methods (to give a better resistance to DPA), even though the 
scalar blindings cause an increase of the representation length. 
However, if the representation length of the given scalar is 
fixed to m+1, then a more efficient point blinding algorithm 
can be obtained using the identity 1 1 1m mτ τ −+ + + =  over 
the main subgroup of 

2
( )maE F . That is, we can obtain 

0

( ) ,
m

i
i

i

dP R d P Rτ
=

+ = +∑              (3) 

for 
0

m i
ii

d d τ
=

= ∑  and R in the main subgroup, and the  
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Table 1. Comparison of algorithms’ cost for L-R versions. 

 Computational cost 

Alg. 2 
m+1 point additions, 1 point doubling,  

m τ-computations 

Alg. 5 
l+3 point additions, l+1 τ-computations 
(plus cost for generating a random point) 

Alg. 6 
m+2 point additions, m τ-computations 

(plus cost for generating a random point) 

 

 
corresponding algorithm can be obtained as follows: 

Algorithm 6. 
Input: 

0
,m i

ii
d d τ

=
= ∑  

2
( )maP E F∈ . 

Output: 
2

( )madP E F∈ . 

1. Choose a random point ( )R O≠  using algorithm 4. 
2. [0] , [1] .T R T P R← ← +  
3. [ ].mS T d←  
4. For i=m–1 to 0, do 

a. ( ) [ ].iS S T dτ← +  
5. Return S–R. 
 

The security aspect of algorithm 6 can similarly be analyzed 
as in algorithm 5. Its computational cost is at most m+2 point 
additions and m τ-computations plus the effort of generating R. 
Thus, compared with algorithm 5 with l = m + 1, algorithm 6 
can save two point additions and τ-computations. Also, 
compared with algorithm 2, algorithm 6 can defeat SPA and 
DPA simultaneously, using only one additional point addition, 
one less point doubling and the effort for generating R. We 
emphasize that, as in the remark in section III, a more efficient 
version of algorithm 6 can be obtained for a = 0 if we use the 
relation 1 1 0mτ − + + =  over the main subgroup. We 
summarized these cost-related discussions in Table 1. 

Next, for extending algorithm 5 to the window method of 
width w, we first assume that the binary τ-adic length l of d is 
divisible by w (by appending some 0 bits in the most 
significant position, if necessary) and modify (2) as follows: for 
l = wt, 

1 1

0 0
1 1

0 0

1 1

0 0

( ) ( ) ( ( ))

( ) ( ( ))

( ) ( ) ( ) ,

l l
i l i

i
i i

t w
l wu j

wu j
u j

t w
l wu w j

wu j
u j

dP R d P R R R

R d P R R

R R R d P

τ τ τ τ

τ τ τ

τ τ τ τ

− −

= =

− −
+

+
= =

− −

+
= =

+ = + + −

= + + −

⎡ ⎤
= + − +⎢ ⎥

⎣ ⎦

∑ ∑

∑∑

∑ ∑

 

for 
2

, ( )maP R E F∈ . Also, for extending algorithm 6, we  

modify (3) into 
1

0 0
( ) ( ( ))

m m
i i

i
i i

dP d P R Rτ τ τ
−

= =

= + −∑ ∑ to derive 

 

1

1

0

1 1

0 0

( ) ( ( ))

( ( ) ( ))

( ) ( )

( ) ( ) ,

m m
i i

i
i wt i wt

wt
i

i
i

m
i k

i
i wt

t w
wu w j

wu j
u j

dP d P R R

d P R R

d P R R

R R d P

τ τ τ

τ τ

τ τ

τ τ τ

−

= =

−

=

=

− −

+
= =

= + −

+ + −

= + −

⎡ ⎤
+ − +⎢ ⎥

⎣ ⎦

∑ ∑

∑

∑

∑ ∑

      

(4)

 

for 1 , 0m wt k k w+ = + ≤ <  and 
2

, ( )maP R E F∈ . Note 
that, in (4), we used R–τ(R) instead of R for a random point 
since it is easier to calculate ( )wR Rτ−  (which appears in the 
last part of (4)) than 1( ) ( )wR R Rτ τ −+ + + . The validity of 
using R–τ(R) instead of R comes from the following lemma. 

Lemma 3. If R is randomly chosen from the main subgroup 
of 

2
( )maE F , then R–τ(R) is also randomly distributed in the 

subgroup. 
Proof. If R is in the main subgroup of 

2
( )maE F , then R = fQ 

for some 
2

( )maQ E F∈  by the proposition in section II, so  
R–τ(R) = f(Q–τ(Q)), which implies that R–τ(R) is also 
contained in the subgroup. To show that R–τ(R) is randomly 
distributed, it is sufficient to show that the map 1–τ is a 
bijection over the main subgroup. In addition, since 1–τ is a 
group homomorphism, the bijectivity can be proved by 
showing that R–τ(R) = O if, and only if, R = O. The last claim 
can easily be verified using the fact that R–τ(R) = O if, and 
only if, R = O, (0,0), (0,1), (1,0), (1,1). Note that the points (0,0), 
(0,1), (1,0), (1,1) are not contained in the main subgroup of 

2
( )maE F .                                       

Finally, for the extensions to the window method with width 
w , it is required to generate a table [ ], 0, , 2 1wT i i = −  
with 1 1[2 2 ] [0] ( ) ( )k kj jj jT T P Pτ τ+ + = + + +  for 

10 2 2 2 1kjj w< + + ≤ − . 

Algorithm 7. Generating a table T 
Input: 

2
, [0] ( )maP T E F∈ , w. 

Output: 
2

[ ] ( ), 1, ,2 1m
w

aT j E F j∈ = −  so that  
1 1[2 2 ] [0] ( ) ( )k kj jj jT T P Pτ τ+ + = + + + for 

10 2 2 2 1kjj w< + + ≤ − . 
1. [2 ] [0] ( )j jT T Pτ← +  for 0, , 1j w= − . 
2. For i = 2 to w . 

a. For 10 1ij j w≤ < < ≤ −  
11 1[2 2 ] [2 2 ] ( ).i i ij j jj jT T Pτ−+ + = + + +  

3. Return { [ ] | 1, ,2 1}wT j j = − . 

Algorithm 7 takes 2w–1 EC point additions and τ- 
computations for its execution. Now, we can get the following 
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algorithms: 

Algorithm 8. 2w-ary version of algorithm 5 
Input: 1

0

l i
ii

d d τ−

=
= ∑ , 

2
( )maP E F∈ , w. 

Output: 
2

( )madP E F∈ . 

1. Append 0 bits, if necessary, to make the new representation length 
l’ of d be divisible by w. Let l’=wt. 

2. Choose a random point ( )R O≠  using algorithm 4. 
3. .S R←  
4. [0] ( ).wT R Rτ← −  
5. Compute [ ], 1, ,2 1wT i i = − , using algorithm 7. 

6. For u=t–1 to 0, do 

a. 
1

0
( ) [ 2 ].

w
w j

wu j
j

S S T dτ
−

+
=

← + ∑  

7. Return S R− . 
 
Algorithm 9. 2w-ary version of algorithm 6 
Input: 

0

m i
ii

d d τ
=

= ∑  with m wt k= +  and 0 k w≤ < , 

2
( )maP E F∈ , w. 

Output: 
2

( )madP E F∈ . 

1. Choose a random point ( )R O≠  using algorithm 4. 
2. [0] ( ).wT R Rτ← −  
3. Compute [ ], 1, ,2 1wT i i = −  using algorithm 7. 

4. 
0

[ 2 ] ( ) ( ).
k

j w k
wt j

j
S T d R Rτ τ+

=

← + −∑  

5. For u=t–1 to 0, do 

a. 
1

0

( ) [ 2 ].
w

w j
wu j

j

S S T dτ
−

+
=

← + ∑  

6. Return S. 
 

The computational cost of both algorithms can be 
summarized as: assuming that τi-computation for i > 1 can be 
computed with the same cost as that for τ-computation, 
algorithm 8 takes at most 2 / 1w l w+ +⎡ ⎤⎢ ⎥  point additions and 
2 /w l w+ ⎡ ⎤⎢ ⎥  τ-computations, and algorithm 9 takes at most 
2 / 2w m w+ +⎢ ⎥⎣ ⎦  point additions and 2 / 1w m w+ +⎢ ⎥⎣ ⎦      
τ-computations.  

2. R-L Versions 

Even though R-L scalar multiplication algorithms are very 
difficult to adopt the window method and usually require more 
registers than their L-R counterpart, they also possess some 
merits. For example, to convert an ordinary integer to a τ-adic 
form, algorithm 1 is working on the right-to-left manner, that is, 
the least significant bit is first calculated. Hence, the new 
countermeasures in the R-L fashion may be preferable in the 
memory-constrained environment since there is no need for 
wholly storing the newly recoded scalar. This point is 

particularly critical when the newly recoded scalar cannot be 
overwritten to the memory space for the original scalar, for 
example, when the original scalar is in the read-only memory. 
Also, the authors of [19] commented that the R-L scalar 
multiplication algorithms may be stronger against some 
specific power attacks than the L-R algorithms. With these 
observations in mind, we present the R-L versions of previous 
algorithms. The resulting algorithms can similarly be shown to 
be resistant to all the power attacks mentioned before, partially 
due to the fact that they are based on the R-L scalar 
multiplication algorithm and partially due to the fact that they 
make the input point randomly blinded. 

Algorithm 10. R-L counterpart of algorithm 5 
Input: 1

0

l i
ii

d d τ−

=
= ∑ , 

2
( )maP E F∈ . 

Output: 
2

( )madP E F∈ . 

1. Choose a random point ( )R O≠  using algorithm 4. 
2. ( ).lS Rτ←  
3. [0] ( ) , [1] [0] .T R R T T Pτ← − ← +  
4. For i=0 to l–2, do 

a. [ ].iS S T d← +  
b. [0] ( [0]), [1] ( [1]).T T T Tτ τ← ←  

5. Return 1[ ]lS T d R−+ − . 
 
Algorithm 11. R-L counterpart of algorithm 6 
Input: 

0

m i
ii

d d τ
=

= ∑ , 
2

( )maP E F∈ . 

Output: 
2

( )madP E F∈ . 

1. Choose a random point ( )R O≠  using algorithm 4. 
2. [0] , [1] .T R T P R← ← +  
3. 0[ ].S T d←  
4. [0] ( [0]), [1] ( [1]).T T T Tτ τ← ←  
5. For i=1 to m–1, do 

a. [ ],iS S T d← +  
b. [0] ( [0]), [1] ( [1]).T T T Tτ τ← ←  

6. Return [ ] [0]mS T d T+ − . 
 

Clearly, algorithm 11 can be simplified further for a=0, using 
the argument as in the remark in section III. The computational 
cost of algorithm 10 and 11 are summarized along with 
algorithm 3 in Table 2.  

V. Conclusion 

In this paper, we proposed new efficient power attack 
countermeasures for Koblitz curve cryptosystems which are 
based on the random point blinding technique and the special 
properties of Koblitz curves. We further favorably extended 
these techniques to the window method. Our study included 
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Table 2. Comparison of algorithms’ cost for R-L versions. 

 Computational cost 

Alg. 3 
m+1 point additions, 1 point doubling,  

2m τ-computations 

Alg. 10 
l+3 point additions, 2l τ-computations 

(plus cost for generating a random point) 

Alg. 11 
m+2 point additions, 2m τ-computations 
(plus cost for generating a random point) 

  
 
the detailed investigation into the computational cost and the 
security aspect for the new countermeasures. 
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