• Title/Summary/Keyword: differential image coding algorithm

Search Result 13, Processing Time 0.023 seconds

A moving image compression algorithm using subband coding (부대역 부호화를 이용한 동영상 압축 알고리즘)

  • 장세봉;최재윤;김태효
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.655-658
    • /
    • 1998
  • This paper proposes a moving image compression algorithm using subband coding that divides and processes the differential image of each moving image frame into subband frequency. This method decomposes the original image with each subband and performs DCT. The moving blocks are detected from each of wubband using threshold value which is select from the variance of difference between frames. then they are performed SBDCT and huffman coding in order to reduce the data. As the result of simulation, we confirmed that this method improved the blocking effect of reconstructed image in low bit rate.

  • PDF

Scalable Coding of Depth Images with Synthesis-Guided Edge Detection

  • Zhao, Lijun;Wang, Anhong;Zeng, Bing;Jin, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4108-4125
    • /
    • 2015
  • This paper presents a scalable coding method for depth images by considering the quality of synthesized images in virtual views. First, we design a new edge detection algorithm that is based on calculating the depth difference between two neighboring pixels within the depth map. By choosing different thresholds, this algorithm generates a scalable bit stream that puts larger depth differences in front, followed by smaller depth differences. A scalable scheme is also designed for coding depth pixels through a layered sampling structure. At the receiver side, the full-resolution depth image is reconstructed from the received bits by solving a partial-differential-equation (PDE). Experimental results show that the proposed method improves the rate-distortion performance of synthesized images at virtual views and achieves better visual quality.

Wavelet Transform Coding for Image Communication (영상 통신을 위한 웨이블릿 변환 부호화)

  • Kim, Yong-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In this paper, a new method for effective video coding is studied. Picture set filter is proposed for preserving compression ratio and video quality. This filter controls the compression ratio of each frame depending on the correlation to the reference frame by selectively eliminating less important high-resolution areas. Consequently, video quality can be preserved and bit rate can be controlled adaptively. In the simulation, to test the performance of the proposed coding method, comparisons with the full search block matching algorithm and the differential image coding algorithm are made. In the former case, video quality, compression ratio and encoding time is improved. In the latter case, video quality is degraded, but compression ratio and encoding time is improved. Consequently, the proposed method shows a reasonably good performance over existing ones.

Efficient CT Image Segmentation Algorithm Using both Spatial and Temporal Information

  • Lee, Sang-Bock;Lee, Jun-Haeng;Lee, Samyol
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.505-510
    • /
    • 2004
  • This paper suggests a new CT-image segmentation algorithm. This algorithm uses morphological filters and the watershed algorithms. The proposed CT-image segmentation algorithm consists of six parts: preprocessing, image simplification, feature extraction, decision making, region merging, and postprocessing. By combining spatial and temporal information, we can get more accurate segmentation results. The simulation results illustrate not only the segmentation results of the conventional scheme but also the results of the proposed scheme; this comparison illustrates the efficacy of the proposed technique. Furthermore, we compare the various medical images of the structuring elements. Indeed, to illustrate the improvement of coding efficiency in postprocessing, we use differential chain coding for the shape coding of results.

  • PDF

A binary adaptive arithmetic coding algorithm based on adaptive symbol changes for lossless medical image compression (무손실 의료 영상 압축을 위한 적응적 심볼 교환에 기반을 둔 이진 적응 산술 부호화 방법)

  • 지창우;박성한
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2714-2726
    • /
    • 1997
  • In this paper, adaptive symbol changes-based medical image compression method is presented. First, the differenctial image domain is obtained using the differentiation rules or obaptive predictors applied to original mdeical image. Also, the algorithm determines the context associated with the differential image from the domain. Then prediction symbols which are thought tobe the most probable differential image values are maintained at a high value through the adaptive symbol changes procedure based on estimates of the symbols with polarity coincidence between the differential image values to be coded under to context and differential image values in the model template. At the coding step, the differential image values are encoded as "predicted" or "non-predicted" by the binary adaptive arithmetic encoder, where a binary decision tree is employed. The simlation results indicate that the prediction hit ratios of differential image values using the proposed algorithm improve the coding gain by 25% and 23% than arithmetic coder with ISO JPEG lossless predictor and arithmetic coder with differentiation rules or adaptive predictors, respectively. It can be used in compression part of medical PACS because the proposed method allows the encoder be directly applied to the full bit-planes medical image without a decomposition of the full bit-plane into a series of binary bit-planes as well as lower complexity of encoder through using an additions when sub-dividing recursively unit intervals.

  • PDF

A differential image quantizer based on wavelet for low bit rate video coding (저비트율 동영상 부호화에 적합한 웨이블릿 기반의 차영상 양자화기)

  • 주수경;유지상
    • Journal of Broadcast Engineering
    • /
    • v.8 no.4
    • /
    • pp.473-480
    • /
    • 2003
  • In this paper, we propose a new quadtree coding a1gorithm to improve the performance of the old one. The new algorithm can process any frame of size in standard and reduce encoding and decoding time by decreasing computational load. It also improves the image quality comparing with any old quantizer based on quadtree and zerotree structure. In order for the new algorithm to be applied for real video codec, we analyze the statistical characteristics of coefficients of differential image and add a function that makes It deal with an arbitrary size of image by using new technique while the old one process by block unit. We can also improve the image quality by scaling the coefficient's value from a differential image. By comparing the performance of the new algorithm with quadtree and SPIHT, it Is shown that PSNR is improved, that the computational load is not reduced in encoding and decoding.

Data Transition Minimization Algorithm for Text Image (텍스트 영상에 대한 데이터 천이 최소화 알고리즘)

  • Hwang, Bo-Hyun;Park, Byoung-Soo;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.371-376
    • /
    • 2012
  • In this paper, we propose a new data coding method and its circuits for minimizing data transition in text image. The proposed circuits can solve the synchronization problem between input data and output data in the modified LVDS algorithm. And the proposed algorithm is allowed to transmit two data signals through additional serial data coding method in order to minimize the data transition in text image and can reduce the operating frequency to a half. Thus, we can solve EMI(Electro-Magnetic Interface) problem and reduce the power consumption. The simulation results show that the proposed algorithm and circuits can provide an enhanced data transition minimization in text image and solve the synchronization problem between input data and output data.

Wavelet Transform Coding for Image Conference (화상회의를 위한 웨이브렛 변환 부호화)

  • 김정일
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.3
    • /
    • pp.73-77
    • /
    • 1999
  • In this paper. wavelet transform coding for image conference is studied. Original video frames are transformed into hierarchical pyramidal images with multiresolution using the band property of wavelet transform coefficients. Moving information between neighboring frames is obtained from the low-resolution band. Also, to control the video coding procedure. a new picture set filter is proposed. This filter controls the compression ratio of each frame depending on the correlation to the reference frame by selectively eliminating less important high-resolution areas. Consequently. video quality can be preserved and bit rate can be controlled adaptively In the simulation, to test the performance of the proposed coding method, comparisons with the full search block matching algorithm and the differential image coding algorithm are made. Consequently. the proposed method shows a reasonably good performance over existing ones.

Image Coding by Block Based Fractal Approximation (블록단위의 프래탈 근사화를 이용한 영상코딩)

  • 정현민;김영규;윤택현;강현철;이병래;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.45-55
    • /
    • 1994
  • In this paper, a block based image approximation technique using the Self Affine System(SAS) from the fractal theory is suggested. Each block of an image is divided into 4 tiles and 4 affine mapping coefficients are found for each tile. To find the affine mapping cefficients that minimize the error between the affine transformed image block and the reconstructed image block, the matrix euation is solved by setting each partial differential coefficients to aero. And to ensure the convergence of coding block. 4 uniformly partitioned affine transformation is applied. Variable block size technique is employed in order to applynatural image reconstruction property of fractal image coding. Large blocks are used for encoding smooth backgrounds to yield high compression efficiency and texture and edge blocks are divided into smaller blocks to preserve the block detail. Affine mapping coefficinets are found for each block having 16$\times$16, 8$\times$8 or 4$\times$4 size. Each block is classified as shade, texture or edge. Average gray level is transmitted for shade bolcks, and coefficients are found for texture and edge blocks. Coefficients are quantized and only 16 bytes per block are transmitted. Using the proposed algorithm, the computational load increases linearly in proportion to image size. PSNR of 31.58dB is obtained as the result using 512$\times$512, 8 bits per pixel Lena image.

  • PDF

Bitrate Reduction by Interleaving DCT Coefficients for Differential Images (차이영상에 대한 DCT 계수의 끼워짜기를 이용한 비트율 감소)

  • 이상길;양경호;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.14-23
    • /
    • 1993
  • This paper proposes an algorithm to reduce the bitrate for transmission of MCP(motion compensated prediction) error signals. Many digital image coders have recently employed hybrid coding schemes which perform motion compensation, DCT transform, quantization, and variable length coding. The variable length coding compresses the quantized DCT coefficient data by removing their statistical redundancy. But some DCT blocks have the interblock statistical redundancy as well as the intrablock one. To utilize both of them, the DCT blocks are classified into the interleaving group and the non-interleaving group. And then each DCT blocks in the interleaving group are is encoded independently, and the DCT blocks in the interleaving group are encoded after interleaving the DCT coefficients. Through the simulations, it is shown that the proposed method outperforms the conventional method in which each DCT block is encoded independently.

  • PDF