• 제목/요약/키워드: differential form

검색결과 786건 처리시간 0.023초

Parametric Design of Complex Hull Forms

  • Kim Hyun-Cheol;Nowacki Horst
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.47-63
    • /
    • 2005
  • In the present study, we suggest a new method for designing complex ship hull forms with multiple domain B-spline surfaces accounting for their topological arrangement, where all subdomains are fully defined in terms of form parameters, e.g., positional, differential and integral descriptors. For the construction of complex hull forms, free-form elementary models such as forebody, afterbody and bulbs are united by Boolean operation and blending surfaces in compliance with the sectional area curve (SAC) of the whole ship. This new design process in this paper is called Sectional Area Curve-Balanced Parametric Design (SAC-BPD).

WEAKLY BERWALD SPACE WITH A SPECIAL (α, β)-METRIC

  • PRADEEP KUMAR;AJAYKUMAR AR
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.491-502
    • /
    • 2023
  • As a generalization of Berwald spaces, we have the ideas of Douglas spaces and Landsberg spaces. S. Bacso defined a weakly-Berwald space as another generalization of Berwald spaces. In 1972, Matsumoto proposed the (α, β) metric, which is a Finsler metric derived from a Riemannian metric α and a differential 1-form β. In this paper, we investigated an important class of (α, β)-metrics of the form $F={\mu}_1\alpha+{\mu}_2\beta+{\mu}_3\frac{\beta^2}{\alpha}$, which is recognized as a special form of the first approximate Matsumoto metric on an n-dimensional manifold, and we obtain the criteria for such metrics to be weakly-Berwald metrics. A Finsler space with a special (α, β)-metric is a weakly Berwald space if and only if Bmm is a 1-form. We have shown that under certain geometric and algebraic circumstances, it transforms into a weakly Berwald space.

11종 패모(貝母)의 기원별 자연·약재상태 감별 (Identification of 11 species of Paemo through each original plant and medicines)

  • 이승호;주영승
    • 대한본초학회지
    • /
    • 제29권6호
    • /
    • pp.133-140
    • /
    • 2014
  • Objectives : Paemo is a phlegm-resolving drug with cold properties and classified 5 kinds which come from 11 species of original plant. All the more, according to literature record, 20 species of original plant were used. As a natural result, these are easily to confuse and there are a lot of counterfeit product. So we are to present a differential standard of Paemo. Methods : It was planed a differential standard form through outer appearance of the original plant and outer appearance in the form of each medicines which was collected local market or field for 11 species which is listed in Korea or China pharmacopeia. Results : It was possible to distinguish the orignal plant between Fritillaria and Bolbostemma through its stem shape. In Fritillaria of original plant, it was possible to distinguish through its width of leaf, number of leafy bracts, color and position of flower and shape of leaf apex. In outer appearance in the form of each medicines, there are difference in color and texture of medicine between Fritillaria and Bolbostemma and there are difference in size, shape, size of inner and outter fleshy leaf of bulb, pattern of surface and apex of fleshy leaf of bulb among 10 Fritillaria species. Conclusions : This study presents various differences in the outer appearance of the original plant and the outer appearance in the form of each medicines among Paemo. It will be helpful to further applied research.

ON THE NUMERICAL SOLUTION OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS USING MULTIQUADRIC APPROXIMATION SCHEME

  • Vanani, Solat Karimi;Aminataei, Azim
    • 대한수학회보
    • /
    • 제45권4호
    • /
    • pp.663-670
    • /
    • 2008
  • In this paper, the aim is to solve the neutral delay differential equations in the following form using multiquadric approximation scheme, (1) $$\{_{\;y(t)\;=\;{\phi}(t),\;\;\;\;\;t\;{\leq}\;{t_1},}^{\;y'(t)\;=\;f(t,\;y(t),\;y(t\;-\;{\tau}(t,\;y(t))),\;y'(t\;-\;{\sigma}(t,\;y(t)))),\;{t_1}\;{\leq}\;t\;{\leq}\;{t_f},}$$ where f : $[t_1,\;t_f]\;{\times}\;R\;{\times}\;R\;{\times}\;R\;{\rightarrow}\;R$ is a smooth function, $\tau(t,\;y(t))$ and $\sigma(t,\;y(t))$ are continuous functions on $[t_1,\;t_f]{\times}R$ such that t-$\tau(t,\;y(t))$ < $t_f$ and t - $\sigma(t,\;y(t))$ < $t_f$. Also $\phi(t)$ represents the initial function or the initial data. Hence, we present the advantage of using the multiquadric approximation scheme. In the sequel, presented numerical solutions of some experiments, illustrate the high accuracy and the efficiency of the proposed method even where the data points are scattered.

Efficient Hardware Implementation of Real-time Rectification using Adaptively Compressed LUT

  • Kim, Jong-hak;Kim, Jae-gon;Oh, Jung-kyun;Kang, Seong-muk;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권1호
    • /
    • pp.44-57
    • /
    • 2016
  • Rectification is used as a preprocessing to reduce the computation complexity of disparity estimation. However, rectification also requires a complex computation. To minimize the computing complexity, rectification using a lookup-table (R-LUT) has been introduced. However, since, the R-LUT consumes large amount of memory, rectification with compressed LUT (R-CLUT) has been introduced. However, the more we reduce the memory consumption, the more we need decoding overhead. Therefore, we need to attain an acceptable trade-off between the size of LUT and decoding overhead. In this paper, we present such a trade-off by adaptively combining simple coding methods, such as differential coding, modified run-length coding (MRLE), and Huffman coding. Differential coding is applied to transform coordinate data into a differential form in order to further improve the coding efficiency along with Huffman coding for better stability and MRLE for better performance. Our experimental results verified that our coding scheme yields high performance with maintaining robustness. Our method showed about ranging from 1 % to 16 % lower average inverse of compression ratio than the existing methods. Moreover, we maintained low latency with tolerable hardware overhead for real-time implementation.

Segmental Wedge를 이용한 차압식 유량측정 방법 (Flowrate Measurement Using Segmental Wedge as a Restriction Device for Differential Pressure)

  • 윤준용;성낙원
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.302-307
    • /
    • 2005
  • The discharge coefficient in segmental wedge having ninety degrees vertex angle for the five kinds of opening ratio with differential pressure taps located at both upstream and downstream of one diameter of pipe was measured main purpose of this work is placed on developing the proper form of an equation for the discharge coefficient of a segmental wedge used as a primary element of flow metering devices, and from thata six-term equation which can express the variability of opening ratios was developed. The same assumption and hypotheses were used and tested for all procedures as conventional differential producers; however, the range of the opening ratio over this work is more expanded than previous studies. The opening ratios of segmental wedge, namely 0.3, 0.4, 0.5, 0.6 and 0.7 were investigated the Reynolds number based on the spool inside diameter ranges from 12,000 to 380,000, the resulting equation for the discharge coefficient is relatively simple; it contains only one variable-opening ratio because the characteristic of discharge coefficient of segmental wedge has little connection with the Reynolds number as shown by previous studies.

  • PDF

AN APPROPRIATE INFLOW MODEL FOR SIMULTANEOUS DISSOLUTION AND DEGRADATION

  • Lee, Ju-Hyun;Kang, Sung-Kwon;Choi, Hoo-Kyun
    • 호남수학학술지
    • /
    • 제31권1호
    • /
    • pp.109-124
    • /
    • 2009
  • Based on the observed data for Clarithromycin released, three commonly used inflow models: the power, the exponential, and the logarithmic models are considered. Among them, the power model is used most in practice for simplicity. Using the numerical parameter estimation techniques, the parameters appeared in the model equations are estimated. Through the numerical estimation results using the several experimental data sets, the exponential model turns out to be best among the three models. More specifically, the sum of squares of absolute errors and the sum of squares of relative errors for the exponential model are reduced by 80-95 % for the experimental data sets and 60-90 % for the noise added data sets compared with those for the power and logarithmic models. A typical experimental data set is used in this paper to show the estimation method and its numerical results. The proposed numerical method and its algorithm are designed for estimating the parameters appeared in the model differential equations for which the exact form of the solution is unknown in general. The methodology developed can be applied to more general cases such as the nonlinear ordinary differential equations or the partial differential equations.

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

REDUCED DIFFERENTIAL TRANSFORM FOR THERMAL STRESS ANALYSIS UNDER 2-D HYPERBOLIC HEAT CONDUCTION MODEL WITH LASER HEAT SOURCE

  • SUTAR, CHANDRASHEKHAR S.;CHAUDHARI, KAMINI K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권2호
    • /
    • pp.54-65
    • /
    • 2021
  • In this study, a two-dimensional thermoelastic problem under hyperbolic heat conduction theory with an internal heat source is considered. The general solution for the temperature field, stress components and displacement field are obtained using the reduced differential transform method. The stress and displacement components are obtained using the thermal stress function in the reduced differential transform domain. All the solutions are obtained in the form of power series. The special case with a time-dependent laser heat source has been considered. The problem is considered for homogeneous material with finite rectangular cross-section heated with a non-Gaussian temporal profile. The effect of the heat source on all the characteristics of a material is discussed numerically and graphically for magnesium material taking a pulse duration of 0.2 ps. This study provides a powerful tool for finding the solution to the thermoelastic problem with less computational work as compared to other methods. The result obtained in the study may be useful for the investigation of thermal characteristics in engineering and industrial applications.

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang;Hai Qing
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.265-272
    • /
    • 2024
  • In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.