• 제목/요약/키워드: differential flow angle

검색결과 30건 처리시간 0.028초

대형축류팬의 실속과 대책 (Stall and Counter-measure for Large Size Axial-Flow Fan)

  • 심의보
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.70-77
    • /
    • 1998
  • The rise in pressure across the impeller blade of an axial flow fan depends on the angle of attack. At a low back pressure, the air volume will be large and the angle of attack is small. The gradual increase of the back pressure approached stall zone which is not stationary but travels blade to blade passage. In consequence, a region occurs around these blades with large vibration in the flow. To avoid these stall operation, the stall detector in the axial flow fans has been designed to detect stalling condition with a manometer or differential pressure switch by electric mechanism.

  • PDF

경사노즐 선회분사기의 가솔린 분무 특성 (The Gasoline Spray Characteristics of Tapered Nozzle for a Swirl Injector)

  • 문석수;최재준;배충식
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.11-17
    • /
    • 2007
  • The swirl spray for direct-injection spark-ignition (DISI) engines was investigated using a nozzle whose exit surface shape was cut with a certain tapered angle. The reason for the change in spray's characteristics at various tapered angles was explained by the data correlating the taper and flow angles. The spray tended to shift its characteristics from the symmetric to asymmetric when the tapered angle was increased; furthermore, the spray penetration and spray cone angle were also increased. When the tapered angle was greater than the $90^{\circ}$ minus flow angle, an opened hollow cone spray was formed because of the fuel impingement against the tapered surface area of the nozzle exit. This behavior indicates that the reduction in the air pressure difference between the inner and outer spray of the spray can be achieved. This behavior also promises the potential use of the tapered nozzle for the case where the independence of the spray performance from atmospheric pressure and fuel temperature is desired.

  • PDF

Segmental Wedge를 이용한 차압식 유량측정 방법 (Flow rate Measurement Using Segmental Wedge as a Restriction Device for Differential Pressure)

  • 윤준용;성낙원
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.22-28
    • /
    • 2006
  • The discharge coefficient in segmental wedge haying ninety degrees yeller angle for the five kinds of opening ratio with differential pressure taps located at both upstream and downstream of one diameter of pipe was measured. Main purpose of this work is placed on specifying the characteristic of discharge coefficient of a segmental wedge used as a primary element of flow metering devices, and suggestion for the fixed location of pressure taps useful. Although the range of the opening ratio over this work is more expanded than previous studies. The opening ratios of segmental wedge, namely 0.3, 0.4, 0.5, 0.6 and 0.7 were investigated. The Reynolds number based on the spool inside diameter ranges from 12,000 to 380,000.

수직관에서 2상선회유동이 보이드분포와 압력강하에 미치는 영향 (The Effects of Two - Phase Swirling Flow on Void Distribution and Pressure Drop in a Vertical Tube)

  • 김인석;손병진;신현동;곽기태
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.190-201
    • /
    • 1989
  • This experimental investigation has been conducted to determine the effects of swirling angle and flow patterns on distributions of void fraction, bubble velocity and two-phase pressure drop in a vertical straight tube. Swirling angles of $0^{\circ}$ (non swirling), $30^{\circ}$, and $45^{\circ}$ were tested with air-water two components over a range of superficial air velocities. A transparent lucite tube of 38mm in internal diameter was used for the test section. The void fraction and bubble velocities were measured by means of a optical fiber probe at the upper part of the swirler in the test section. Pressure drops which seem to be closely related with flow patterns and swirling angle were measured by a differential pressure transducer. It is shown that the probability density functions of pressure drop demonstrate peculiar features for both swirling angles and flow patterns, whereas the distributions of void fraction and bubble velocities are parabolic and flat shape in the vicinity of tube center, respectively except bubbly flow in any swirling angle cases, and the void fraction increases with increasing swirling angle around the center of tube.

  • PDF

Numerical investigation of the effects angles of attack on the flutter of a viscoelastic plate

  • Sherov, A.G.;Khudayarov, B.A.;Ruzmetov, K.Sh.;Aliyarov, J.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.215-228
    • /
    • 2020
  • As is shown in the paper, the Koltunov-Rzhanitsyn singular kernel of heredity (when constructing mathematical models of the dynamics problem of the hereditary theory of viscoelasticity) adequately describes real mechanical processes, best approximates experimental data for a long period of time. A mathematical model of the problem of the flutter of viscoelastic plates moving in a gas with a high supersonic velocity is given. Using the Bubnov-Galerkin method, discrete models of the problem of the flatter of viscoelastic plates flowed over by supersonic gas flow are obtained. A numerical method is developed to solve nonlinear integro-differential equations (IDE) for the problem of the hereditary theory of viscoelasticity with weakly singular kernels. A general computational algorithm and a system of application programs have been developed, which allow one to investigate the nonlinear dynamic problems of the hereditary theory of viscoelasticity with weakly singular kernels. On the basis of the proposed numerical method and algorithm, nonlinear problems of the flutter of viscoelastic plates flowed over in a gas flow at an arbitrary angle are investigated. In a wide range of changes in various parameters of the plate, the critical velocity of the flutter is determined. It is shown that the singularity parameter α affects not only the oscillations of viscoelastic systems, but the critical velocity of the flutter as well.

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N.;Haq, Rizwan Ul;Awais, Muhammad;Rashid, Irfan
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1680-1688
    • /
    • 2017
  • In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.

비탈면 경사 변화에 따른 토석류 거동의 수치모의 (Numerical Simulation for Behavior of Debris Flow according to the Variances of Slope Angle)

  • 김성덕;윤일로;오세욱;이호진;배우석
    • 한국지반환경공학회 논문집
    • /
    • 제13권6호
    • /
    • pp.59-66
    • /
    • 2012
  • 본 연구의 목적은 다양한 경사를 가진 비탈면에서 토석류의 거동과 메카니즘을 평가하는 것이다. 수치모의는 질량보존 및 운동량 보존에 관한 방정식에 기초하여 유한차분법을 이용하여 수행되었다. 토석류 유동 메카니즘은 토석류, 소류집합유동, 소류이동 등의 3가지 형태로 나눌 수 있다. 우선 하류부에서 공급유량의 변화에 따른 직선 사면과 2단 경사 사면에 대한 유량, 유동심, 토사체적 농도를 조사하였다. 공급유량이 적을수록 토석류가 도달한 직후에만 유량과 유동심의 상승이 있었고, 이후 감소하는 경향을 나타내지만, 공급유량의 증가로 인해 유량과 유동심의 곡선이 불안정하면서 높게 나타났다. RMS비 비교 결과 2단 경사 비탈면이 직선 비탈면보다 유량과 유동심이 적게 나타난 것을 확인하였다. 둘째, 2단 경사 비탈면에서 하류부의 경사각도 변화에 따른 유량, 유동심, 토사체적 농도를 조사하였다. 하류부 경사각도 $14^{\circ}$$16^{\circ}$사이의 유량과 유동심 곡선의 밴드폭이 다른 각도 사이보다 크게 나타났으며, 10초 이후에는 높은 값의 파동이 지속된다는 것을 확인하였다.

A Transient stability Analysis Algorithm Using decoupled Network Solution

  • Park, Young-Moon;Park, Jong-Bae
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.135-139
    • /
    • 1988
  • This paper presents a new algorithm using power flow solution which is given by the polar form Newton-Raphson method in a transient stability analysis. The computation time to solve network equations can be much saved by a decoupled power flow method. In addition, the time is much saved in performing a approximate stability analysis by linearizing the differential equations and using a voltage and angle sensitivity matrix given in network equations.

  • PDF

순수한 찬물속에 잠겨있는 경사진 등온벽면 부근의 자연대류에 관한 수동력학적 안정성 (The Hydrodynamic Stability of Natural Convection Flows Adjacent to an Inclined Isothermal Surface Submerged in Cold, Pure Water)

  • 황영규;장명륜
    • 설비공학논문집
    • /
    • 제2권4호
    • /
    • pp.268-278
    • /
    • 1990
  • Hydrodynamic stability equations are formulated for natural convection flows adjacent to a heated or cooled, inclined, isothermal surface in pure water at $4^{\circ}C$, where the density variation with temperature becomes nonlinear. The resulting stability equations, when reduced to ordinary differential equations by a similarity transformation, constitute a two-point boundary-value problem, which was solved numerically. It is found from the obtained stability results that the neutral stability curves are systematically shifted to have lower critical Grashof numbers, as the inclination angle of upward-facing plate increases. Also, the nose of the neutral stability curve becomes blunter as the angle increases. It implies that the greater the inclination of the upward-facing plate, the more susceptible of the flow to instability for the wide range of disturbance wave number and frequency.

  • PDF

Aerodynamic forces on fixed and rotating plates

  • Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.;Richards, P.J.
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.127-144
    • /
    • 2010
  • Pressure measurements on static and autorotating flat plates have been recently reported by Lin et al. (2006), Holmes, et al. (2006), and Richards, et al. (2008), amongst others. In general, the variation of the normal force with respect to the angle of attack appears to stall in the mid attack angle range with a large scale separation in the wake. To date however, no surface pressures have been measured on auto-rotating plates that are typical of a certain class of debris. This paper presents the results of an experiment to measure the aerodynamic forces on a flat plate held stationary at different angles to the flow and allowing the plate to auto-rotate. The forces were determined through the measurement of differential pressures on either side of the plate with internally mounted pressure transducers and data logging systems. Results are presented for surface pressure distributions and overall integrated forces and moments on the plates in coefficient form. Computed static force coefficients show the stall effect at the mid range angle of attack and some variation for different Reynolds numbers. Normal forces determined from autorotational experiments are higher than the static values at most pitch angles over a cycle. The resulting moment coefficient does not compare well with current analytical formulations which suggest the existence of a flow mechanism that cannot be completely described through static tests.