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Abstract

This paper presents a new algorithm
using power flow solution which is
given by the polar form Newton-Raphson
method in a8 transient stability
analysis., The computation time to
solve network equations can be much
saved by a decoupled power flow method.
In addition, the time iz much saved in
performing a approximate stability
analysis by linearizing the
differential equations and using a
voltage and angle sensitivity matrix
given in network equations.

1. Introduction

A conventional approach to a transient
stability analysis is to solve in turn
aystem network equations and nonlinear
differential equations representing the
dynamics of & power system. The
nonlinear differential equations of =a
power system are solved by a numerical
integration method suh as the
Runge-Kutta method or the Buler
method,etc. And system network
equations represented as
voltage-current equations or power flow
equations are analyzed by the Gauss
iterative method or the Newton-Raphson
method, . In a general method of
stability analysis, a generator is
treated as fictitious slack node
followed by impedance or equivalent
current source comnected to shunt
admittance in parallel. A load is
generally represented as constant
impedance or constant current or
constant. power,

In this peper, the loads are modeled as
a function of terminal voltage and
frequency. And the generators are
modeled as voltage dependent sources of
real and remctive power connected to
the terminal buses. In a viewpoint of
time , the analysis method suggested in
this paper is faster than other
approaches since a decomposition method

can  be applied by  using polar
coordinates instead of rectangular ones
to solve network equations. Also, by
combining a voltage and angle
aensitivity matrix obtained in network
equations and linearized state
equations , the time is much saved in
performing approximate stability
analysis,

2. The representation of synchronous
generators

Each generator is described by the
following nonlinear differential
equations.

. rf
Wi = wm=e—e ( Pmi -~ Pei ) ~—~—(1)

Hi
FizW - 2Nf —eeem PR —(2)

Tdoi’Eqi’ = Efd - Eqi’ - (xd -xdi’}Idi
------------- (3)

for i=1,...,M

where
M : the number of generator

Pmi : mechanical power input
Pei ; electrical power input
Wi ¢ angular speed

Hi : ipertia constant

& i : rotor angle relative to a
reference axis ‘

Tdoi’: d - axis transient open circuit
time constant

Eqi’ : q - sxis voltage back of
transient reactance

Efd : field voltage acting along q-axis

xdi ¢ d - axis synchronous reactance

xdi’ ! d - axis transient reactance

Idi : d ~ sxis current

The variables of each generator are
related as shown in figure 1,
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figurel. Phasor diagram of synchronous
machine with sailency

Equations (1),(2),(3) are symbolically

expressed as follows:

vhere
X
v
e

state vector of all generators
voltage vector of all buses
voltage angle vector of all buses

3. The formulation of network equations
The network of a power system consists
of N buses. At the given time the
following real and reactive power
equations should be satisfied at all
buses.

Pgi - P1i =

Qi - Qli = Qui ———— —--{6)

for i=1,...N
where

Pgi,Qdi :
Pli,Qli :

real and reactive generator

powers injected at bus i

real and reactive powers

of loed at bus i

Pni,@Qni : real and reactive powers
injection to a network at bus i

Pgi,Qgi are given by (7),(8).
Here Vi and ©1i mean voltage and voltage
angle at bus i.

vi Eqi’sin (& i-61)

Pyl = -
vi“sin 2(8 1-0 1) (xdi*-xai) ..oy
) 2 xdi’ xq
Vi Bqi’cos (& 1-81)
i =

» sadi’ % L3
Vi ( xqi cos(d 1-81) +xdi’sin(§ i-01)) ...)

xwdi’ xq

if sailency xdi’=xqi

Aaqi
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And Pni,Qni are given as follows:

N
Pni = Vi¥ (Gij cos(@i-8J) + Bij 8in(0 i-8 jHIVJi
=1 —®

N .
@i = ViZ (Gij 8in(@i-8J) - Bij cos(8i-8 j)IVJi
J=1 —we=Clo)

where
Gij,Bij : conductance and suceptance
components of network admittance
between i-th and j-th bus.

As Pli and Qli are dependent on the
terminal voltage and frequency, we are
modeled Pli and Qli as following equations
(11),(12).

vi K

Pliz=Ploi ( ——==— )} (1 + 8 pi &fi ) ———Ci)

Voi
vi

QAi=Qloi { ——— f"( 1+ A8qiafi)===C2)

Voi

81i(t) - 9i(t -4t)
afi = :

at

where

Ploi :post-fault real power of load at
bus i

Qloi:post-fault reactive power of load
at bus i

Vloi:poat-fault voltage at bus i

afi :frequency deviation at bus i

At :calculation step in stability

analysis

:effect constant of voltage for real

load power

:effect constant of voltage for reac-

tive load power

:effect constant of frequency for real

load power

:effect constant of frequency for

reactive load power

For example, if the load of i-th bus is
considered as constant impedance then
the constants become like these.
KpizKqi=2, # pi=8 qi=0.

4. Network solution scheme

Kpi
Kqi
A pi

The network solution scheme is given by

the following procedure.

Solving the nonlinear differential
equations representing generators at time
t , we can obtain the state values of next
step(t+Aat). And the state values of
next step are substitued for Pgi,Qgi.

The next step voltages and angles are
obtained by solving the network equations
maintaining the state values of next step.

The network equations to be solved should
be linearized at the values of votages and
angles at time t. Then the equations
should be  solved iteratively and
voltages and angles wupdated until
network equations are satisfied.
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The formulations are given by the following
equations:

o) ) « N 3Pni aPgi  aPli ®
Pgi - Pli - Pni = & (--moe = oo 4 mm— vj
J=1, vy 2vj Avy
N gPni  5Pgi  3Pli oy
L R e + -8 J
=1 38J 285 8
® W w N yani Qai Qi i
Qi -Qli ~-gni =% (-)---- - 3—--- + -’--- Ry vjw
. J=1 vy 2Vj 2vj
N soni qei QL
L I e et + ——‘-—-)Ae.jw
J=1 283 aJeJ 28
and
™y, aa®
eiuw= e 9, 20 &
memmmemeea(13)

Generator power injections and loads are
dependent on voltage and angle , and
therefore their corresponding partial
derivatives in (13) are no longer zero and
expressed in (14).

Pl Eqi sin (51 -84 )
avi -y
Vi sin 2 (61 81} ( xd' - xql )
+
xdi’xqi
2Pl ~Eqi Vi cos (31 -1}
?61i xdi’

Vizlcos 2 (31 -01) { xdi'~ xqi )

xdi 'xqi
2Qui Eqi cos (61 -B81 )
2vi ) xdi’

2Vi(xdi’sin (5 1 -9 1) + xqicos (51 - 9 1))

xdi’'xqi
2wl Eqi Vi sin (51 -81)
201 xdi’
z 4
Visin2 (51 -81) { xdl - xql )

xdi’xql
2PL vy ket
----- = Kpi Plof ~~-euee
vi Voi Kp¢
Pl vi Kt ap
————— 2 Plol (-----) —-ea
Jei Voi t
Hat v ki
----- = Kqi Qlof --——---
Vi Voi Kav
P vi ¥bi aq
----- = Ploi {(-——---) --—x
281 Voi t
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aPei  JPgi o Qi Qai
IfifJ -5 == ez~ 3 0
Vi 83 Vi 38
aPlL  3PU QL Qu
gy, 22
IV 203 3Vy 38
--------------- (15)
Define Pi,Qi as follows.
& () W *
Pi = Pni 4 Pei + ST
(] [27]
Qi = Pt - aail
{16)
Here k denotes an iteration index.
To reduce network inversion times,
let Jacobian matrix be constant. But

if the condition of power syatem changes
repidly ( i.e. Jjust after fault or fault
clear ) ,the Jacobien matrix should be
changed at each iteration.

Voltages and angles are updated until
the absolute values of (16) are within a

tolerance.

A matrix equation is shown in (17).
A symbolic form of the matrix equation is
given by (18).

I‘l(k) 2 )
T N
o oo AR
. )!l | e :H o

_m 17 P Iy * K
IKINE SRR T SRER 1 ARLLy

[ [ ol amet 1 & gill
R )
[ P “ R
17 I U PO |

. 3 . . 2| . .
L —QN(-' ng” 5".‘,,' ™M FAS In.dvn“'lﬁ

e (17)
r (x, r al r
2 N U T VL)
LT b o
LR oy e | av®)
[ 4 [ -+ - -4
---------------- (18)
This Jacobian matrix is an equal form of

the steady state Jacobian matrix except
for the diagonal elements of
J17,J27,J3',J4’. As the value of J2’
elements is much smaller than that of Ji’,
the matrix J2’ can be assumed to be =zero
matrix By the same reason ,J3’ can be
ignored. Consequently, the Jacobian
matrix is decoupled as follows:

(P®] = [Tr][e®]
[a®) = [s¥][av¥]
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The algorithm is described as follows:
C?r?z?
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5. The analysis of linearized equations

The network equations and the nonlinear
differential equations of generators at a

given time t are linearized
respectively,and they are combined
together.

First, linearizing differential equations
as follows: )

X=FX V,8)
where
r b} r ) r b
| X1 1 | vi| | 81
X=] . | V=i . 1 &=1| . |
[ | [
| X2 | 1 V2 | | 82|
= o [ o [ 4
. r a9 4
AX=AaX + [B:C] | I +g
L aya

(19)

Secondly, linearizing network equations as
shown below:
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PR(X,V,B8)-P(V,08)=P(V,B8)
®(X,v,8)-Q@(vV,8)=;¢(V,8)

where 2
[J’] S : voltage angle sensitivity matrix

From eqgs. (19),(20)

aX = AAX + g
where . , -t

A = (A+[B:C1(J] 8
the values of states are obtained as a
transition matrix by changing only g each
step, and those of voltage and angle are
obtained simply by eq. (20).

6. Case study

The transient stability studies of a power
system congsisting of 2 generators, 5 buses
and 7 lines are made as an example. The
3-phase fault was placed on generator 1
yand the fault was cleared in 0.1 second.
The conventional algorithm was compared
with the Newton-Raphson method using the
polar coordinates suggested in this paper.
In the conventional algorithm, the network
equations are solved by the Gauss-Seidal
iterative method.

In Figure 3, the conventional algorithm
was used, and in Figure 4, the suggested
one. In Figure 5, the linearized method
was applied.

The results of this simulation show that

it takes less time to apply the suggested
algorithm to solve network equations.
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figure 3. conventional analysis.
p : angle of generator 1.
® : angle of generator 2.
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figure 4. suggested analysis.
» : angle of generator 1.
™ : angle of generator 2.
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figure 5. linearized analysis.
» : angle of generator 1,
¥ : angle of generator 2,

7. Conclusion

The main features of this paper are
sumarized as follows:

a) The direct inclusion of the formulas
for dgenerators and loads powers in a
network equations is possible.

b) The decomposition is possible by using
the polar coordinates in the
Newton-Raphson method.

c) Due to the suggested linearized method,
much time is saved in analyzing approxi-
- te transient stability.
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