• Title/Summary/Keyword: differential coefficient

Search Result 456, Processing Time 0.025 seconds

Identification of Inrush and Internal Fault in Indirect Symmetrical Phase Shift Transformer Using Wavelet Transform

  • Bhasker, Shailendra Kumar;Tripathy, Manoj;Kumar, Vishal
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1697-1708
    • /
    • 2017
  • This paper proposes an algorithm for the differential protection of an Indirect Symmetrical Phase Shift Transformer (ISPST) by considering the different behaviors of the compensated differential current under internal fault and magnetizing inrush conditions. In this algorithm, a criterion function is defined which is based on the difference of amplitude of the wavelet transformation over a specific frequency band. The function has been used for the discrimination between three phase magnetizing inrush and internal fault condition and requires less than a quarter cycle after disturbance. This method is independent of any coefficient or threshold values of wavelet transformation. The merit of this algorithm is demonstrated by the simulation of different faults in series and excitation unit and magnetizing inrush with varying switching conditions on ISPST using PSCAD/EMTDC. Due to unavailability of in-field large interconnected transformers for such a large number of destructive tests, the results are further verified by Real Time Digital Simulator (RSCAD/RTDS). The proposed algorithm has been compared with the conventional harmonic restraint based method that justifies the application of wavelet transform for differential protection of ISPST. The proposed algorithm has also been verified for different rating of ISPSTs and satisfactory results were obtained.

Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory

  • Elmeiche, Noureddine;Abbad, Hichem;Mechab, Ismail;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.737-746
    • /
    • 2020
  • This paper attempts to investigate the free vibration of functionally graded material beams with nonuniform width based on the nonlocal elasticity theory. The theoretical formulations are established following the Euler-Bernoulli beam theory, and the governing equations of motion of the system are derived from the minimum total potential energy principle using the nonlocal elasticity theory. In addition, the Differential Quadrature Method (DQM) is applied, along with the Chebyshev-Gauss-Lobatto polynomials, in order to determine the weighting coefficient matrices. Furthermore, the effects of the nonlocal parameter, cross-section area of the functionally graded material (FGM) beam and various boundary conditions on the natural frequencies are examined. It is observed that the nonlocal parameter and boundary conditions significantly influence the natural frequencies of the functionally graded material beam cross-section. The results obtained, using the Differential Quadrature Method (DQM) under various boundary conditions, are found in good agreement with analytical and numerical results available in the literature.

A Study on Reduction of Cavitation with Orifice on High Differential Pressure Control Butterfly Valve (오리피스를 이용한 고차압 제어 버터플라이 밸브의 캐비테이션 저감에 관한 연구)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.131-139
    • /
    • 2022
  • The exchange of goods over the sea is a situation in which the amount of trade between countries is gradually increasing. In order to maintain the optimal operating condition, the ship maintains stability and optimal operating conditions by inserting or withdrawing ballast water from the ballast tank according to the loading condition of cargo capacity is also increasing. Control valves play an important role in controlling fluid flow in these pipes. When the flow rate is controlled using a control valve, problems such as cavitation, flashing, and suffocating flow may occur due to high differential pressure, and in particular, damage to valves and pipes due to cavitation is a major problem. Therefore, in this study, the cavitation phenomenon is reduced by installing orifices at the front and rear ends of the high differential pressure control butterfly valve to reduce the sudden pressure drop at the limiting part of the butterfly valve step by step. The flow coefficient according to the shape of the orifice, the degree of cavitation occurrence, and the correlation were analyzed using a CFD(Cumputational Fluid Dynamics), and an optimal orifice design for reducing cavitation is derived.

Novel Y-Type Polyimide with Highly Enhanced Thermal Stability of Second Harmonic Generation

  • Lee, Ju-Yeon;Kim, Jin-Hyang;Rhee, Bum-Ku
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.234-237
    • /
    • 2007
  • 3,4-Bis-(3,4-dicarboxyphenylcarboxyethoxy)-4'-nitrostilbene dianhydride was prepared and reacted with 4,4'-(hexafluoroisopropylidene)dianiline to yield a novel Y-type polyimide containing the 3,4-dioxynitrostilbenyl group as an NLO-chromophore, which constituted part of the polymer backbone. The resulting polyimide was soluble in polar solvents such as acetone and N,N-dimethylformamide. The polymer exhibited good thermal stability up to $370^{\circ}C$ in the thermogravimetric analysis. The glass-transition temperature ($T_g$) obtained from the differential scanning calorimetry thermogram was near to $153^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of the poled polymer film at the fundamental wavelength of $1064\;cm^{-1}$ was around $2.15\;{\times}\;10^{-8}\;esu$ (9.01 pm/V). The dipole alignment exhibited exceptionally high thermal stability even at a temperature $30^{\circ}C$ above the $T_g$, and there was no SHG decay below $180^{\circ}C$ because of the partial main chain character of the polymer structure.

The Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed dynamically. Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm Optimization.

Mathematical Model for Analysis on the Behaviours of Submerged Mound Constructed by the Dredged Materials (수중둔덕의 거동특성 해석을 위한 수학적 모형)

  • Choi, Han-kyu;Lee, Oh-Sung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.391-402
    • /
    • 1999
  • The numerical model predicting the behaviours of submerged mound constructed by dredged material is developed in this paper. The model is based on the Bailard's sediment transport formula, Stokes' second-order wave theory and the sediment balance equation. Nonlinear partial differential equation which is the same form as convection-dispersion equation which represents change of bed section can be obtained by substituting sediment transport equation for equation of sediment conservation. By this process, the analytical solution by which the characteristic of the behaviours of submerged mound can be estimated is derived by probably combining the convention coefficient and the dispersion coefficient governing the behaviours of submerged mound and the probability density function representing the wave characteristics. The validity of the analytical solution is verified by comparing the analytical solution which is assumed to estimate the movement rate submerged mound by bed-load with the field data of the past and its characteristic is analyzed quantitatively by obtaining the mean of the dispersion coefficient representing the extent of the decrease rate of the submerged mound height.

  • PDF

Monetary Policy Shocks and Exchange Rate Changes in Korea

  • Jung, Heonyong;Han, Myunghoon
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.84-88
    • /
    • 2019
  • This paper examines whether the exchange rate respond differently to monetary policy shocks in Korea using regression model. We find an asymmetric response of the monetary policy shocks to the monetary policy shocks in the context of Korea. Over the whole period sample, we do not find the effect of an actual interest rate on exchange rate. But we find that the estimated coefficient on the expected and unexpected change in the policy rate are negative and statistically significant. In the period of monetary policy easing, the estimated coefficient on the expected and unexpected change in the policy rate are negative but not statistically significant. In contrast, the period of monetary policy tightening, the estimated coefficient on the expected and unexpected change in the policy rate are negative and statistically significant.

A Study of stability in ratings for clothing styles (의복스타일에 따른 평가의 재현성 차이에 관한 연구)

  • 유경숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.8
    • /
    • pp.924-934
    • /
    • 2003
  • The aim of the present study was to measure intra-individual consistency in clothing style evaluation and to examine its relation to the ratings. For this study, a pilot test was conducted to 50 clothing majored university students to explore the stimulus of‘cute’,‘casual’,‘sexy’,‘elegant’,‘intelligent’,‘formal’,‘romantic’,‘individual’,‘refined’for the 9 each image styles from the 32 spring wears in fashion magazine$\boxDr$FARBE$\boxUl$(March, 2000). On the basis of the preliminary survey, the question items explored the 15 pairs of bipolar adjectives as seven-point Likert type. The main survey was preceded 94 female and 111 men of university students from March 13 to 24 in 2000, twice for 7-days interval. As a result of analyzing of correlation coefficients between the two ratings for each subjects, intra-individual consistency in the evaluation, ranged from -.11 to .87 and mean coefficient was .64 of female and .20 to .76 and mean coefficient was .57 of male. Female had higher intra-individual consistency in the evaluation than male. Based on the coefficients, the subjects were classified into three groups: high, medium, and low intra-individual consistency. Analysis of variance of mean ratings by the three groups revealed that significant difference existed in 42% of female and 25% of male in 135 combinations of 9 clothing and 15 semantic differential scales. There was an apparent tendency that subjects of female with high intra-individual consistency were mostly definitely to evaluate clothing, whereas the ones with low were least. But male shows opposit trend compare to each groups of female. The result of this study, it was found that female rated higher intra-individual consistency and definition in the two times evaluations than male and among the semantic differential scales'consistency differ depending on style and gender. It is believed that the result of this study is helpful clothing image evaluation, and clothing image selection tendency.

Cracking Behavior of Concrete Box Culvert for Power Transmission Due to Drying Shrinkage (전력구 콘크리트 구조물의 건조수축 균열특성에 관한 연구)

  • Woo, Sang-Kyun;Chu, In-Yeop;Kim, Ki-Jung;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to predict the cracking behavior and suggest the method of controlling the cracking in concrete box culvert for power transmission due to differential drying shrinkage. Drying shrinkage cracking is mainly influenced by the moisture diffusion coefficient that determines moisture diffusion rate inside concrete structures. In addition to the diffusion coefficient, surface coefficient of concrete surface and relative humidity of ambient air simultaneously affect the moisture evaporation from concrete inside to external air outside. Within the framework of drying shrinkage cracking mechanism, it is necessary to perform the numerical analysis, which involves these three influencing factors to predict and control the shrinkage cracking of concrete. In this study, moisture diffusion and stress analysis cor responding to drying shrinkage on concrete box culvert are performed with consideration of diffusion coefficient, surface coefficient, and relative humidity of ambient air. From the numerical results, it is found that cracking behavior due to differential drying shrinkage of box culvert shows the different feature according to three influencing factors and the methodology of controlling of drying shrinkage cracks can be suggested from this study.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.