• Title/Summary/Keyword: differential coefficient

Search Result 456, Processing Time 0.025 seconds

Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers

  • Liang, Di;Wu, Qiong;Lu, Xuemei;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.47-62
    • /
    • 2020
  • In this study, free vibration behavior of trapezoidal sandwich plates with porous core and two graphene platelets (GPLs) reinforced nanocomposite outer layers are presented. The distribution of pores and GPLs are supposed to be functionally graded (FG) along the thickness of core and nanocomposite layers, respectively. The effective Young's modulus of the GPL-reinforced (GPLR) nanocomposite layers is determined using the modified Halpin-Tsai micromechanics model, while the Poisson's ratio and density are computed by the rule of mixtures. The FSDT plate theory is utilized to establish governing partial differential equations and boundary conditions (B.C.s) for trapezoidal plate. The governing equations together with related B.C.s are discretized using a mapping- generalized differential quadrature (GDQ) method in the spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained by GDQ method. Validity of current study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns of two faces through the thickness, porosity coefficient and distribution of porosity on natural frequencies characteristics. New results show the importance of this permeates on vibrational characteristics of porous/GPLR nanocomposite plates. Finally, the influences of B.C.s and dimension as well as the plate geometry such as face to core thickness ratio on the vibration behaviors of the trapezoidal plates are discussed.

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

Power-Based Side Channel Attack and Countermeasure on the Post-Quantum Cryptography NTRU (양자내성암호 NTRU에 대한 전력 부채널 공격 및 대응방안)

  • Jang, Jaewon;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1059-1068
    • /
    • 2022
  • A Post-Quantum Cryptographic algorithm NTRU, which is designed by considering the computational power of quantum computers, satisfies the mathematically security level. However, it should consider the characteristics of side-channel attacks such as power analysis attacks in hardware implementation. In this paper, we verify that the private key can be recovered by analyzing the power signal generated during the decryption process of NTRU. To recover the private keys, the Simple Power Analysis (SPA), Correlation Power Analysis (CPA) and Differential Deep Learning Analysis (DDLA) were all applicable. There is a shuffling technique as a basic countermeasure to counter such a power side-channel attack. Neverthe less, we propose a more effective method. The proposed method can prevent CPA and DDLA attacks by preventing leakage of power information for multiplication operations by only performing addition after accumulating each coefficient, rather than performing accumulation after multiplication for each index.

Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes

  • Shin, Soobong;Lee, Sun-Ung;Kim, Yuhee;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.229-245
    • /
    • 2012
  • Bridge vibration displacements have been directly measured by LVDTs (Linear Variable Differential Transformers) or laser equipment and have also been indirectly estimated by an algorithm of integrating measured acceleration. However, LVDT measurement cannot be applied for a bridge crossing over a river or channel and the laser technique cannot be applied when the weather condition is poor. Also, double integration of accelerations may cause serious numerical deviation if the initial condition or a regression process is not carefully controlled. This paper presents an algorithm of estimating bridge vibration displacements using vibration strains measured by FBG (Fiber Bragg Grating) sensors and theoretical mode shapes of a simply supported beam. Since theoretically defined mode shapes are applied, even high modes can be used regardless of the quality of the measured data. In the proposed algorithm, the number of theoretical modes is limited by the number of sensors used for a field test to prevent a mathematical rank deficiency from occurring in computing vibration displacements.89The proposed algorithm has been applied to various types of bridges and its efficacy has been verified. The closeness of the estimated vibration displacements to measured ones has been evaluated by computing the correlation coefficient and by comparing FRFs (Frequency Response Functions) and the maximum displacements.

Aerodynamic forces on fixed and rotating plates

  • Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.;Richards, P.J.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.127-144
    • /
    • 2010
  • Pressure measurements on static and autorotating flat plates have been recently reported by Lin et al. (2006), Holmes, et al. (2006), and Richards, et al. (2008), amongst others. In general, the variation of the normal force with respect to the angle of attack appears to stall in the mid attack angle range with a large scale separation in the wake. To date however, no surface pressures have been measured on auto-rotating plates that are typical of a certain class of debris. This paper presents the results of an experiment to measure the aerodynamic forces on a flat plate held stationary at different angles to the flow and allowing the plate to auto-rotate. The forces were determined through the measurement of differential pressures on either side of the plate with internally mounted pressure transducers and data logging systems. Results are presented for surface pressure distributions and overall integrated forces and moments on the plates in coefficient form. Computed static force coefficients show the stall effect at the mid range angle of attack and some variation for different Reynolds numbers. Normal forces determined from autorotational experiments are higher than the static values at most pitch angles over a cycle. The resulting moment coefficient does not compare well with current analytical formulations which suggest the existence of a flow mechanism that cannot be completely described through static tests.

Mathematical Review on the Local Linearizing Method of Drift Coefficient (추세계수 국소선형근사법의 특성과 해석)

  • Yoon, Min;Choi, Young-Soo;Lee, Yoon-Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.801-811
    • /
    • 2008
  • Modeling financial phenomena with diffusion processes is a commonly used methodology in the area of modern finance. Recently, various types of diffusion models have been suggested to explain the specific financial processes, and their related inference methodology have been also developed. In particular, likelihood methods for the efficient and accurate inference have been explored in various ways. In this paper, we review the mathematical properties of an approximated likelihood method, which is obtained by linearizing the drift coefficient of a diffusion process.

Experimental and Numerical Investigation of Sliding Response of Unconstrained Objects to Base Excitations (바닥진동에 의한 비구속 물체의 거동파악 실험과 수치해석 전산프로그램의 개발)

  • Lee, Sang Ho
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.463-469
    • /
    • 2014
  • Safety related devices unconstrained temporally in the process of operation of nuclear power plants could be damaged by the sliding during seismic activity. In this study sliding response of unconstrained objects to the base excitations is studied experimentally and analytically. In experiments static and dynamic tests to determine the coefficient of friction and the shaking table experiments to verify the sliding response of the analytic results were conducted. Numerical solutions by solving the nonlinear differential equations of motion governing sliding were found by the computer program using the step by step acceleration method. The exact solutions of the sliding response to the simple forms of base excitations were found to verify the computer program developed in this study. Relative displacement envelopes were suggested as a colliding criteria of the unconstrained objects.

An Extended Similarity Solution for One-Dimensional Multicomponent Alloy Solidification in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 일차원 다원합금 응고에 대한 확장된 해석해)

  • Chung, Jae-Dong;Yoo, Ho-Seon;Choi, Man-Soo;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.426-434
    • /
    • 2000
  • This paper deals with a generalized similarity solution for the one-dimensional solidification of ternary or higher-order multicomponent alloys. The present approach not only retains the existing features of binary systems such as temperature- solute coupling, shrinkage-induced flow, solid-liquid property differences, and finite back diffusion, but also is capable of handling a multicomponent alloy without restrictions on the partition coefficient and microsegregation parameter. For an alloy of N-solute species, governing equations in the mushy region reduce to (N+2) nonlinear ordinary differential equations via similarity transformation, which are to be solved along with the closed-form solutions for the solid and liquid regions. A linearized correction scheme adopted in the solution procedure facilitates to determine the solidus and liquidus positions stably. The result for a sample ternary alloy agrees excellently with the numerical prediction as well as the reported similarity solution. Additional calculations are also presented to show the utility of this study. Finally, it is concluded that the present analysis includes the previous analytical approaches as subsets.

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.

Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia

  • Wang, Jee-Ray;Liu, Tsung-Lung;Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • Because of complexity, the literature regarding the free vibration analysis of a Timoshenko beam carrying "multiple" spring-mass systems is rare, particular that regarding the "exact" solutions. As to the "exact" solutions by further considering the joint terms of shear deformation and rotary inertia in the differential equation of motion of a Timoshenko beam carrying multiple concentrated attachments, the information concerned is not found yet. This is the reason why this paper aims at studying the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass systems using an exact as well as a numerical assembly method. Since the shear deformation and rotary inertia terms are dependent on the slenderness ratio of the beam, the shear coefficient of the cross-section, the total number of attachments and the support conditions of the beam, the individual and/or combined effects of these factors on the result are investigated in details. Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on the lowest five natural frequencies of the combined vibrating system is somehow complicated.