This paper describes a percentage current differential relaying algorithm for bus protection blocked by a CT saturation detection algorithm. The detection algorithm blocks the output of a current differential relay only if a differential current is caused by CT saturation in the case of an external fault. Moreover, if a current differential relay operates faster than the detection algorithm, the blocking signal is not ignited. On the other hand. if the detection algorithm operates faster than a current differential relay, the output of the relay is blocked. The results of the simulation show that the proposed algorithm can discriminate internal faults from external faults ever when a CT is saturated in both cases. This paper concludes by implementing the algorithm into the TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory The algorithm can not only increase the sensitivity of the current differential relay but Improve the stability of the relay for an external faults.
This paper proposes a modified current differential relay for transformer protection unaffected by the remanent flux. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. To cope with the remanent flux, before saturation, the relay calculates the core-loss current and uses it to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the actual core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.
LCD TV의 백라이트로서는 cold cathode flourescent lamp (CCFL)를 병렬로 구성한 직하방식의 백라이트 많이 사용되고 있다. 현재 각 각의 CCFL에 transformer 한개 씩을 사용하여 일정한 전류를 공급함으로서 백라이트의 균일도를 얻고 있으나 본 논문에서는 differential driving inverter를 이용하여 transfomer에 8개의 램프를 연결하여 구동함으로써 transformer의 개수를 현저히 줄일 수 있었다. Differential driving 방법을 이용하여 transformer 2개를 사용한 인버터를 제작하였으며 이를 이용하여 길이 450mm, 관경 4mm의 CCFL 16개를 사용한 26"용 LCD TV 백라이트를 구동할 수 있었다. 개발된 differential driving 인버터를 이용하여 백라이트를 구동한 결과 $88\%$ 이상의 휘도 균일도를 갖는 백라이트를 구현할 수 있었다.
This paper proposes a modified current differential relay for $Y-{\Delta}$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation, because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay does not require additional restraining signal and thus cause time delay of the relay.
A vehicle's differential gear is a device designed to allow the vehicle's outer wheels to turn faster than the inner wheels when turning on a curve. The differential gear case is the main component of the differential gear system, which is composed of ring gear, pinion gear and side gear, and is fastened by pinion shaft pins. The differential gear case rotates when the vehicle is running, so balancing calibration is very important. In this study, a balancing machine that can diagnose and correct the differential gear case and mass imbalance of various rotating bodies was designed. The differential gear case was rotated at high speed to accurately diagnose the location and value of the unbalanced mass, and it was designed to be balanced and corrected by removing the unbalanced mass by drilling. After calibration, it was confirmed that the unbalanced value of all the measured samples was reduced to less than 180g.mm, and the unbalance reduction ratio was improved to 60~70%.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권1호
/
pp.435-451
/
2019
Impossible differential cryptanalysis is an essential cryptanalytic technique and its key point is whether there is an impossible differential path. The main factor of influencing impossible differential cryptanalysis is the length of the rounds of the impossible differential trail because the attack will be more close to the real encryption algorithm with the number becoming longer. We provide the upper bound of the longest impossible differential trails of several important block ciphers. We first analyse the national standard of the Russian Federation in 2015, Kuznyechik, which utilizes the 16-byte LFSR to achieve the linear transformation. We conclude that there is no any 3-round impossible differential trail of the Kuznyechik without the consideration of the specific S-boxes. Then we ascertain the longest impossible differential paths of several other important block ciphers by using the matrix method which can be extended to many other block ciphers. As a result, we show that, unless considering the details of the S-boxes, there is no any more than or equal to 5-round, 7-round and 9-round impossible differential paths for KLEIN, Midori64 and MIBS respectively.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3815-3833
/
2021
MILP-based automatic search is the most common method in analyzing the security of cryptographic algorithms. However, this method brings many issues such as low efficiency due to the large size of the model, and the difficulty in finding the contradiction of the impossible differential distinguisher. To analyze the security of ESF algorithm, this paper introduces a simplified MILP-based search model of the differential distinguisher by reducing constrains of XOR and S-box operations, and variables by combining cyclic shift with its adjacent operations. Also, a new method to find contradictions of the impossible differential distinguisher is proposed by introducing temporary variables, which can avoid wrong and miss selection of contradictions. Based on a 9-round impossible differential distinguisher, 15-round attack of ESF can be achieved by extending forward and backward 3-round in single-key setting. Compared with existing results, the exact lower bound of differential active S-boxes in single-key setting for 10-round ESF are improved. Also, 2108 9-round impossible differential distinguishers in single-key setting and 14 12-round impossible differential distinguishers in related-key setting are obtained. Especially, the round of the discovered impossible differential distinguisher in related-key setting is the highest, and compared with the previous results, this attack achieves the highest round number in single-key setting.
본 연구에서는 차동 구조의 고주파 증폭기를 위한 비대칭 차동 인덕터를 제안하였다. 제안 된 비대칭 차동 인덕터는 증폭기 내 차동 신호 간 위상 오차를 완화하기 위한 것으로서, 차동 인덕터에 형성되는 Center-tap의 위치를 조정하여, 전력 증폭기를 구성하는 구동 증폭기의 차동 신호에서 바라보이는 임피던스가 동일하게 형성 되도록 하였다. 이를 통하여 기존 차동 인덕터를 사용하는 경우 대비 AM-to-AM 및 AM-to-PM 왜곡이 완화됨을 확인 하였다. 제안하는 비대칭 차동 인덕터의 효용성을 확인하기 위하여 180-nm RFCMOS 공정을 이용하여 2.4-GHz CMOS 전력 증폭기를 설계하였으며, EVM 5% 기준 20 dB의 전력 이득과 17 dBm의 최대 선형 출력 전력을 얻었다.
In this paper, a new parallel CMOS self-bias differential amplifier is designed to use in high-speed analog signal processing circuits. The designed parallel CMOS self-bias differential amplifier is developed by using internal biasing circuits and the complement gain stages which are parallel connected. And also, the parallel architecture of the designed parallel CMOS self-bias differential amplifier can improve the gain and gain-bandwidth product of the typical CMOS self-bias differential amplifier. With 1.8V $0.8{\mu}m$ CMOS process parameter, the results of HSPICE show that the designed parallel CMOS self-bias differential amplifier has a dc gain and a gain-bandwidth product of 64 dB and 49 MHz respectively.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5773-5784
/
2019
ARIA is an involutory SPN block cipher. Its block size is 128-bit and the master key sizes are 128/192/256-bit, respectively. Accordingly, they are called ARIA-128/192/256. As we all know, ARIA is a Korean Standard block cipher nowadays. This paper focuses on the security of ARIA against impossible differential attack. We firstly construct a new 4-round impossible differential of ARIA. Furthermore, based on this impossible differential, a new 7-round impossible differential attack on ARIA-256 is proposed in our paper. This attack needs 2118 chosen plaintexts and 2210 7-round encryptions. Comparing with the previous best result, we improve both the data complexity and time complexity. To our knowledge, it is the best impossible differential attack on ARIA-256 so far.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.