• Title/Summary/Keyword: different regions

Search Result 3,678, Processing Time 0.041 seconds

DIRECTIONAL FILTER BANK-BASED FINGERPRINT IMAGE ENHANCEMENT USING RIDGE CURVATURE CLASSIFICATION

  • Lee, Joon-Jae;Lee, Byung-Gook;Park, Chul-Hyun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.49-57
    • /
    • 2007
  • In fingerprints, singular regions including core or delta points have different directional characteristics from non-singular regions. Generally, the ridges of singular regions change more abruptly than those of nonsingular areas, thus in order to effectively enhance fingerprint images regardless of region, local ridge curvature information needs to be used. In this paper, we present an improved Directional Filter Bank (DFB)-based fingerprint image enhancement method that effectively takes advantage of such ridge curvature information. The proposed method first decomposes a fingerprint image into 8 directional subbands using the DFB and then classifies the image into background, low curvature, and high curvature regions using the directional energy estimates calculated from the subbands. Thereafter, the weight values for directional subband processing are determined using classification information and directional energy estimates. Finally, the enhanced image is obtained by synthesizing the processed subbands. The experimental results show that the proposed approach is effective in enhancing both singular and non-singular regions.

  • PDF

Stability analysis of deepwater compliant vertical access riser about parametric excitation

  • Lou, Min;Hu, Ping;Qi, Xiaoliang;Li, Hongwei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.688-698
    • /
    • 2019
  • If heave motion in the platform causes horizontal parametric vibration of a Compliant Vertical Access Riser (CVAR), the riser may become unstable. A combination of riser parameters lies in the unstable region aggravates vibrational damage to the riser. Change of axial tensile stress in the riser combined with its natural frequency and mode shape change results in mode coupling. In accordance with the state transition matrices of the riser in the coupled and uncoupled states, the stable and unstable regions were obtained by Floquet theory, and the vibration response under different conditions was obtained. The parametric excitation of the CVAR is shown to occur mainly in first-order unstable regions. Mode coupling may cause parametric excitation in the least stable regions. Damping reduces the extent of unstable regions to a certain extent.

Is Sunlight a Predisposing Factor for Triple Negative Breast Cancer in Turkey?

  • Mutlu, Hasan;Buyukcelik, Abdullah;Colak, Taner;Ozdogan, Mustafa;Erden, Abdulsamet;Aslan, Tuncay;Akca, Zeki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.801-803
    • /
    • 2013
  • Intraduction: There is known to be a relationship between vitamin D level and more aggresive breast cancer subtypes, especially triple-negative breast cancer (TNBC). It was reported that sunlight exposure has an effect on the prognosis of patients with cancer, possibly related to the conversion of vitamin D to its active form with sunlight. We aimed to evaluate the effect of sunlight exposure on patients with TNBC. Materials-Methods: A total of 1,167 patients with breast cancer from two different regions of Turkey (Antalya and Kayseri, regions having different climate and sunlight exposure intensity over the year) were analysed retrospectively. The ratio of patients with TNBC was identified in those two regions. Results: The ratio of patients with TNBC was 8% and 12% for Kayseri and Antalya regions, respectively, and this difference between the two groups was statistically significant (p=0.021). Discussion: Sunlight exposure may be associated with more prevalent TNBC. This finding should be investigated with a prospective study.

Federated Architecture of Multiple Neural Networks : A Case Study on the Configuration Design of Midship Structure (다중 인공 신경망의 Federated Architecture와 그 응용-선박 중앙단면 형상 설계를 중심으로)

  • 이경호;연윤석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.77-84
    • /
    • 1997
  • This paper is concerning the development of multiple neural networks system of problem domains where the complete input space can be decomposed into several different regions, and these are known prior to training neural networks. We will adopt oblique decision tree to represent the divided input space and sel ect an appropriate subnetworks, each of which is trained over a different region of input space. The overall architecture of multiple neural networks system, called the federated architecture, consists of a facilitator, normal subnetworks, and tile networks. The role of a facilitator is to choose the subnetwork that is suitable for the given input data using information obtained from decision tree. However, if input data is close enough to the boundaries of regions, there is a large possibility of selecting the invalid subnetwork due to the incorrect prediction of decision tree. When such a situation is encountered, the facilitator selects a tile network that is trained closely to the boundaries of partitioned input space, instead of a normal subnetwork. In this way, it is possible to reduce the large error of neural networks at zones close to borders of regions. The validation of our approach is examined and verified by applying the federated neural networks system to the configuration design of a midship structure.

  • PDF

Color Image Enhancement Using Local Area Histogram Equalization On Segmented Regions Via Watershed Transform

  • Lertpokanont, B.;Chitwong, S.;Cheevasuvit, F.;Dejhan, K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.192-194
    • /
    • 2003
  • Since the details in quasi-homogeneous region will be destroyed from the conventional global image enhancement method such as histogram equalization. This defect is caused by the saturation of gray level in equalization process. So the local histogram equalization for each quasi-homogeneous region will be used in order to improve the details in the region itself. To obtain the quasi- homogeneous regions, the original image must be segmented. Here we applied the watershed transform to the interesting image. Since the watershed transform is based on mathematical morphology, therefore, the regions touch can be effectively separated. Hence two adjacent regions which have the similar gray pixels will be split off. The process will be independently applied to three different spectral images. Then three different colors are assigned to each processed image in order to produce a color composite image. By the proposed algorithm, the result image shows the better perception on image details. Therefore, the high efficiency of image classification can be obtained by using this color image.

  • PDF

Study on the Urban-rural Complex Classification of Southeastern States in the U. S. using Regional Characteristics Variables (지역 특성 변수를 활용한 미국 남동부지역 도농혼재 유형화 연구)

  • Baik, Jong-Hyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.4
    • /
    • pp.107-116
    • /
    • 2020
  • The purpose of this study is to analyze the characteristics of the 11 southeastern states in the United States by using regional characteristics variables and to classify the regions. First, 19 variables from four categories of population, society, industry-economy and urban service were selected and factor analysis were conducted, and the result showed five major factors of population, economic condition, job and commuting. Based on the following factor scores, a cluster analysis was conducted, and eight types of big city, medium-sized city, bed town, small town, urban hinterland, retirement town, and rural village were derived. These types of spatial distribution characteristics showed big cities were by different types of regions and they formed metropolitan areas. Each types of classified regions were located along the road network with hierarchy. The study focused on cases in the southeastern regions of the United States and can be used as a comparison with Korean cases. If the same research method is applied to Korea in the future, or if the time series of changes is tracked by analyzing different time points, it will greatly help identify the characteristics of urban and rural mixed areas.

Population Genetic Structure and Marker - Trait Associations in a Collection of Traditional Rice (Oryza sativa L.) from Northern Vietnam

  • Ngoc Ha Luong;Le-Hung Linh;Kyu-Chan Shim;Cheryl Adeva;Hyun-Sook Lee;Sang-Nag Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.04a
    • /
    • pp.110-110
    • /
    • 2022
  • Rice is the world's most important food crop and a major source of nutrition for about two thirds of populations. Northern Vietnam is one of the most important centers of genetic diversity for cultivated rice. In this study, we determined the genetic diversity and population structure of 79 rice landraces collected from northern Vietnam and 19 rice accessions collected from different countries. In total, 98 rice accessions could be differentiated into japonica and indica with moderate genetic diversity and a polymorphism information content of 0.382. We also detected subspecies-specific markers to classify rice (Oryza sativa L.) into indica and japonica. Additionally, we detected five marker-trait associations and rare alleles that can be applied in future breeding programs. Most interestingly, analysis of molecular variance (AMOVA) found genetic differentiation was related to geographical regions with an overall PhiPT (analog of fixation index FST) value of 0.130. More emphasis was given to provide signatures and infer explanations about the role of geographical isolation and environmental heterogeneity in genetic differentiation among regions in landraces from northern Vietnam. Our results suggest that rice landraces in northern Vietnam have a dynamic genetic system that can create different levels of genetic differentiation among regions, but also maintain a balanced genetic diversity between regions.

  • PDF

Reduction of Seam Line Using an FIR Filter in Spatially Compounded Ultrasonic Diagnostic Images (공간합성된 초음파 의료영상에서 FIR 필터를 이용한 심라인 감소방법)

  • Choi, Myoung Hwan
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.129-133
    • /
    • 2008
  • A method to reduce seam line artifact in spatial compounding of ultrasonic images is presented. Spatial compounding is a speckle reducing imaging technique in which a number of ultrasound images of a given target that have been obtained from multiple view angles are combined into a single compounded image by combining the data received from each data point in the compounded image. Since different view angle results in different view area, and the images of different view arms are combined into an image, the compounded image consists of regions with different signal to noise ratio, and the boundary lines between these regions are visible as seam lines in the compounded images. In this paper, we present an algorithm that reduces the visibility of this seam line in the spatially compounded images. Design procedure for a FIH filter is described and the results of applying the filter to in-vivo ultrasonic images are analyzed.

  • PDF

Bioelectrical Impedance Analysis at Popliteal Regions of Human Body using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Bioelectrical impedance (BI) at popliteal regions was measured using a bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, a constant AC current of $800{\mu}A$ was applied to the popliteal regions (left and right) and the BI was measured at eight different frequencies from 10 to 500 kHz. When the applied frequency greater than 50 kHz was applied to human's popliteal regions, the BI was decreased significantly. Logarithmic plot of impedance vs. frequency indicated two different mechanisms in the impedance phenomena before and after 50 kHz. Second, the relationship between resistance and reactance was obtained with respect to the applied frequency using BI (resistance and reactance) acquired from the popliteal regions. The phase angle (PA) was found to be strongly dependent on frequency. At 50 kHz, the PA at the right popliteal region was $7.8^{\circ}$ slightly larger than $7.6^{\circ}$ at the left popliteal region. Third, BI values of extracellular fluid (ECF) and intracellular fluid (ICF) were calculated using BIMS. At 10 kHz, the BI values of ECF at the left and right popliteal regions were $1664.14{\Omega}$ and $1614.08{\Omega}$, respectively. The BI values of ECF and ICF decreased sharply in the frequency range of 10 to 50 kHz, and gradually decreased up to 500 kHz. Logarithmic plot of BI vs. frequency shows that the BI of ICF decreased noticeably at high frequency above 300 kHz because of a large decrease in the capacitance of the cell membrane.

Multi-constellation Local-area Differential GNSS for Unmanned Explorations in the Polar Regions

  • Kim, Dongwoo;Kim, Minchan;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • The mission tasks of polar exploration utilizing unmanned systems such as glacier monitoring, ecosystem research, and inland exploration have been expanded. To facilitate unmanned exploration mission tasks, precise and robust navigation systems are required. However, limitations on the utilization of satellite navigation system are present due to satellite orbital characteristics at the polar region located in a high latitude. The orbital inclination of global positioning system (GPS), which was developed to be utilized in mid-latitude sites, was designed at $55^{\circ}$. This means that as the user is located in higher latitudes, the satellite visibility and vertical precision become worse. In addition, the use of satellite-based wide-area augmentation system (SBAS) is also limited in higher latitude regions than the maximum latitude of signal reception by stationary satellites, which is $70^{\circ}$. This study proposes a local-area augmentation system that additionally utilizes Global Navigation Satellite System (GLONASS) considering satellite navigation system environment in Polar Regions. The orbital inclination of GLONASS is $64.8^{\circ}$, which is suitable in order to ensure satellite visibility in high-latitude regions. In contrast, GLONASS has different system operation elements such as configuration elements of navigation message and update cycle and has a statistically different signal error level around 4 m, which is larger than that of GPS. Thus, such system characteristics must be taken into consideration to ensure data integrity and monitor GLONASS signal fault. This study took GLONASS system characteristics and performance into consideration to improve previously developed fault detection algorithm in the local-area augmentation system based on GPS. In addition, real GNSS observation data were acquired from the receivers installed at the Antarctic King Sejong Station to analyze positioning accuracy and calculate test statistics of the fault monitors. Finally, this study analyzed the satellite visibility of GPS/GLONASS-based local-area augmentation system in Polar Regions and conducted performance evaluations through simulations.