• Title/Summary/Keyword: different porosity distribution models

Search Result 21, Processing Time 0.021 seconds

Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models

  • Ghandourh, Emad E.;Abdraboh, Azza M.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.293-305
    • /
    • 2020
  • This article presented a nanoscale modified continuum model to investigate the free vibration of functionally graded (FG) porous nanobeam by using finite element method. The main novelty of this manuscript is presenting effects of four different porosity models on vibration behaviors of nonlocal nanobeam structure including size effect, that not be discussed before The proposed porosity models are, uniform porosity distribution, symmetric with mid-plane, bottom surface distribution and top surface distribution. The nano-scale effect is included in modified model by using the differential nonlocal continuum theory of Eringen that adding the length scale into the constitutive equations as a material parameter constant. The graded material is distributed through the beam thickness by a generalized power law function. The beam is simply supported, and it is assumed to be thin. Therefore, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Results demonstrate effects of porosity type, material gradation, and nanoscale parameters on the free vibration of nanobeam. The proposed model is effective in vibration analysis of NEMS structure manufactured by porous functionally graded materials.

Post-buckling responses of functionally graded beams with porosities

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.579-589
    • /
    • 2017
  • The objective of this work is to analyze post-buckling of functionally graded (FG) beams with porosity effect under compression load. Material properties of the beam change in the thickness direction according to power-law distributions with different porosity models. It is known that post-buckling problems are geometrically nonlinear problems. In the nonlinear kinematic model of the beam, total Lagrangian finite element model of two dimensional (2-D) continuum is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution, porosity parameters, compression loads on the post-buckling behavior of FG beams are investigated and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in post-buckling case.

Geometrically nonlinear analysis of functionally graded porous beams

  • Akbas, Seref D.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • In this paper, geometrically non-linear analysis of a functionally graded simple supported beam is investigated with porosity effect. The material properties of the beam are assumed to vary though height direction according to a prescribed power-law distributions with different porosity models. In the nonlinear kinematic model of the beam, the total Lagrangian approach is used within Timoshenko beam theory. In the solution of the nonlinear problem, the finite element method is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution such as power-law exponents, porosity coefficients, nonlinear effects on the static behavior of functionally graded beams are examined and discussed with porosity effects. The difference between the geometrically linear and nonlinear analysis of functionally graded porous beam is investigated in detail. Also, the effects of the different porosity models on the functionally graded beams are investigated both linear and nonlinear cases.

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

Nonlinear static analysis of functionally graded porous beams under thermal effect

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.399-415
    • /
    • 2017
  • This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.

An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models

  • Hadji, Lazreg;Zouatnia, Nafissa;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.231-241
    • /
    • 2019
  • In this paper, a new higher order shear deformation model is developed for static and free vibration analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present higher-order shear deformation model, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain displacement, stresses and frequencies, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams.

Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • In the present study, buckling analysis of sandwich composite (carbon nanotube reinforced composite and fiber reinforced composite) Euler-Bernoulli beam in two configurations (core and layers material), three laminates (combination of different angles) and two models (relative thickness of core according to peripheral layers) using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and different types of porosity distribution on critical buckling load are discussed. Using sandwich beam, it shows a considerable enhancement in the critical buckling load when compared to ordinary composite. Actually, resistance against buckling in sandwich beam is between two to four times more. It is also showed the critical buckling loads of laminate 1 and 3 are significantly larger than the results of laminate 2. When Configuration 2 is used, the critical buckling load rises about 3 percent in laminate 1 and 3 compared to the results of configuration 1. The amount of enhancement for laminate 3 is about 17 percent. It is also demonstrated that the influence of the core height (thickness) in the case of lower carbon volume fractions is ignorable. Even though, when volume fraction of fiber increases, differences grow smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Among three porosity patterns investigated, beam with the distribution of porosity Type 2 (downward parabolic) has the maximum critical buckling load. At the end, the first three modes of buckling will be demonstrated to investigate the effect of spring constants.

Cellular Automaton Models Revealing Effects of Initial Bacterial Distribution on Biofilm Growth (생물막 성장에 대한 세균의 초기 분포영향을 나타내는 셀룰라오토마톤 모델)

  • Lee, Sang-Hee;Choi, Kyung-Hee;Chon, Tae-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.297-303
    • /
    • 2004
  • Two dimensional cellular automaton (CA) models were developed to investigate growth of biofilms in aquatic ecosystems. Simple local rules on CA were applied to governing growth of bacterial populations in relation to different nutrient concentrations. Initial bacterial distribution played an important role in determining population size and morphology of biofilm at low concentrations of nutrition. With clumped distribution, population size increased slowly compared with uniform and random distributions, while the porosity tented to be higher with uniform distribution compared with other initial distributions.

Forced vibration of a functionally graded porous beam resting on viscoelastic foundation

  • Alnujaie, Ali;Akbas, Seref D.;Eltaher, Mohamed A.;Assie, Amr
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • This paper concerns with forced dynamic response of thick functionally graded (FG) beam resting on viscoelastic foundation including porosity impacts. The dynamic point load is proposed to be triangle point loads in time domain. In current analysis the beam is assumed to be thick, therefore, the two-dimensional plane stress constitutive equation is proposed to govern the stress-strain relationship through the thickness. The porosity and void included in constituent is described by three different distribution models through the beam thickness. The governing equations are obtained by using Lagrange's equations and solved by finite element method. In frame of finite element analysis, twelve-node 2D plane element is exploited to discretize the space domain of beam. In the solution of the dynamic problem, Newmark average acceleration method is used. In the numerical results, effects of porosity coefficient, porosity distribution and foundation parameters on the dynamic responses of functionally graded viscoelastic beam are presented and discussed. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.

Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation

  • Hadji, Lazreg;Bernard, Fabrice
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.63-98
    • /
    • 2020
  • The novelty of this paper is the use of a simple higher order shear and normal deformation theory for bending and free vibration analysis of functionally graded material (FGM) beams on two-parameter elastic foundation. To this aim, a new shear strain shape function is considered. Moreover, the proposed theory considers a novel displacement field which includes undetermined integral terms and contains fewer unknowns with taking into account the effects of both transverse shear and thickness stretching. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams for which properties vary continuously across the thickness according to a simple power law. Hamilton's principle is used to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio, foundation parameter, the volume fraction of porosity and micromechanical models on the displacements, stresses, and frequencies.