• Title/Summary/Keyword: different loading rates

Search Result 182, Processing Time 0.033 seconds

EFFECT OF INLET LOADING RATE ON THE ELIMINATION OF HYDROGEN SULFIDE AND AMMONIA IN IMMOBILIZED CELL BIOFILTERS

  • Kim, Jung-Hoon;Rene, Eldon R.;Park, Seung-Han;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.285-291
    • /
    • 2006
  • Biofiltration is a simple, effective, economically viable and the most widely used gas treatment technique for treating malodors at low concentrations and high flow rates. This paper reports the performance of two lab scale immobilized cell biofilters operated in continuous mode for hydrogen sulfide ($H_2S$) and ammonia ($NH_3$) removal. The removal efficiency (RE, %) and the elimination capacity (EC, $g/m^3{\cdot}hr$) profiles were monitored by subjecting the biofilters to different loading rates of $H_2S$ (0.3 to $8\;g/m^3{\cdot}hr$) and $NH_3$ (0.3 to $4.5\;g/m^3{\cdot}hr$). The removal efficiencies were greater than 99% when inlet loading rate to the biofilters were upto $6\;gH_2S/m^3{\cdot}hr$ and $4\;gNH_3/m^3{\cdot}hr$ respectively. The performance of the biofilters were also ascertained by conducting shock loading studies at a loading rate of $10\;gH_2S/m^3{\cdot}hr$ and $6\;gNH_3/m^3{\cdot}hr$. The results from this study show high removal efficiency, good recuperating potential and stability of the immobilized microbial consortia to transient shock loads.

Non-Point Source Pollutions of the Youngsan River Basins I - The Method of Land-Use Types and Rainfall - (영산강 수계의 비점오염원에 관한 연구 I - 토지이용 및 강우를 중심으로 -)

  • Cha, Jin Myeong;Shin, Sung Euy;Cha, Gyu Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1999
  • This study was carried out to estimate the runoff loading characteristics of the non-point source pollutions in the Youngsan river basins by the method of land-use types and rainfall. The lysimeter test, rainfall and stream flowmeter measurement were performed to develop the pollutant loading unit discharged from the non-point sources. As the non-point sources, the unit pollutant discharge rates were different from the land-use types such as paddy field, upland, forest, housing site and others. The pollutant loading units classified by land-use types in the Youngsan river basins are as follows: The total BOD loading rate is 15.3 ton/day and the housing site is discharged 50.6%, the total T-N loading rate is 6.0 ton/day and the paddy field and upland is discharged 77.6%, and the total T-P loading rate is 0.39 ton/day and the paddy field and upland is discharged 81.2%. The pollutant loadings by rainfall in the Youngsan river basins are about 7,425 ton/year of BOD, 324 ton/year of T-N and 118 ton/year of T-P, respectively.

  • PDF

Study of Vitrification of Immatured Pig Oocytes: Compared with Open Pulled Straw(OPS), Electron Microscopic Grid(EMG) and Nylon Loop System(NLS) (미성숙 돼지 난자의 유리화 동결에 관한 연구: Open Pulled Straw(OPS), Electron Microscopic Grid(EMG) 및 Nylon Loop System(NLS)의 비교)

  • 김인덕;안미현;석호봉
    • Journal of Embryo Transfer
    • /
    • v.19 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • This study evaluated the efficiency and compared with different materials of loading vessels for vitrification-plastic/glass, copper grid and nylon. The loading method, vitrification, cryop-reservation and warming method of the oocytes were examined. The loading samples prepared in manual or company-made and sterilized, loaded the COCs selected on each samples and cultured for maturation during 40 hours, and then exposed sequentially to ethylene glycol solution. Thawing method was reversely treated and exposed for warmed oocytes. After oocytes were thawed, fertilized and cultured in vitro for 3-4 hours, rates of development and morphological appearance were examined. The results were as summarized: ㆍOPS from company-made or hand-made of the hematocrit micropipettes, NLS from fishing line and EMG from company-made for EM were used for loading oocytes, respectively. ㆍThe efficiency of freezing method and loading convenience were orderly higher in OPS, NLS and EMG. The optimal capacity per vessel was orderly lowered in NLS, EMG and OPS, respectively. ㆍAfter oocytes were warmed, the recovery rate, morphology and rate of development were orderly higher in OPS, NLS and EMG, respectively. ㆍIn conclusion, OPS has the advantages of achieving a little more survival and preserving results than other two loading methods.

Influence of Particle and Filter Charge on Filtration Property of Air Filter under Particle Loading (입자 및 필터 대전상태에 따른 입자부하조건에서 공기정화 필터의 여과특성)

  • Ji, Sung-Mi;Sohn, Jong-Ryeul;Park, Hyun-Seol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.644-655
    • /
    • 2012
  • As soon as a new air filter is applied to an air purification process, the filter gets loaded with dust particles. Thus, the study on the particle loading characteristics of air filter is very essential in order to understand the real filtration phenomena during filter use. In this study, we investigated the effect of particle and filter charge on the particle loading property of air filter. Charged filter and uncharged filter prepared by discharging the charged filter by isopropyl alcohol were used as test samples, and three types of particle having different charge states were supplied to filters tested. For neutralized particles there was a big difference in areal mass loading rates between charged and uncharged filters due to the very small amount of particle charge, on the other hand the difference was diminished for atomized particle and finally almost vanished for corona charged particles. The pressure drop of filter loaded with corona charged particles was only half of those for neutralized and atomized particles at the same areal mass loading because of the porous structure of particle deposit formed on filter fibers, caused by the space charge effect between particles.

A new reconfigurable liquid-metal-antenna-based sensor

  • Zhou, Xiaoping;Fu, Yihui;Zhu, Hantao;Yu, Zihao;Wang, Shanyong
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.353-369
    • /
    • 2022
  • In this paper, a new sensor chip with frequency reconstruction range of 2.252 GHz ~ 2.450 GHz is designed and fabricated. On this basis, a self-designed "T-shaped" shell is added to overcome the disadvantage of uneven deformation of the traditional steel shell, and the range of the sensor chip is expanded to 0 kN ~ 96 kN. The liquid metal antenna is used to carry out a step-by-step loading test, and the relationship between the antenna resonance frequency and the pressure load is analyzed. The results show that there is a good linear relationship between the pressure load and the resonant frequency. Therefore, the liquid metal antenna can be regarded as a pressure sensor. The cyclic loading and unloading experiments of the sensor are carried out, and different loading rates are used to explore the influence on the performance of the sensor. The loading and unloading characteristic curves and the influence characteristic curves of loading rate are plotted. The experimental results show that the sensor has no residual deformation during the cycle of loading and unloading. Moreover, the influence of temperature on the performance of the sensor is studied, and the temperature correction formula is derived.

Nitrification efficiency of biofilters containing different filter media in simulated seawater aquaculture system

  • Lei Peng;Jo, Jae-Yoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.203-204
    • /
    • 2003
  • Ammonia in aquaculture system may lead to suppression of fish growth, sublethal histopathological changes, and even death thus ammonia is considered toxic to fish. Tricking filter and submerged filter have many advantages include: low construction cost, easy management and maintenance, and well adaptation to different water and waste loading rates. (omitted)

  • PDF

Mechanical Properties of Different Anatomical Sites of the Bone-Tendon Origin of Lateral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1013-1021
    • /
    • 2001
  • A series of rabbit common extensor tendon specimens of the humeral epicondyle were subjected to tensile tests under two displacement rates (100mm/min and 10mm/min) and different elbow flexion positions 45°, 90°and 135°. Biomechanical properties of ultimate tensile strength, failure strain, energy absorption and stiffness of the bone-tendon specimen were determined. Statistically significant differences were found in ultimate tensile strength, failure strain, energy absorption and stiffness of bone-tendon specimens as a consequence of different elbow flexion angles and displacement rates. The results indicated that the bone-tendon specimens at the 45°elbow flexion had the lowest ultimate tensile strength; this flexion angle also had the highest failure strain and the lowest stiffness compared to other elbow flexion positions. In comparing the data from two displacement rates, bone-tendon specimens had lower ultimate tensile strength at all flexion angles when tested at the 10mm/min displacement rate. These results indicate that creep damage occurred during the slow displacement rate. The major failure mode of bone-tendon specimens during tensile testing changed from 100% of midsubstance failure at the 90°and 135°elbow flexion to 40% of bone-tendon origin failure at 45°. We conclude that failure mechanics of the bone-tendon unit of the lateral epicondyle are substantially affected by loading direction and displacement rate.

  • PDF

Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification

  • Shin, Jung-Hun;Kim, Byung-Chun;Choi, Okkyoung;Kim, Hyunook;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1670-1679
    • /
    • 2015
  • Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4+-N/m3/d and 0.10-0.21 kg NO3--N/m3/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4+ or NO3- loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

Effect of loading velocity on the seismic behavior of RC joints

  • Wang, Licheng;Fan, Guoxi;Song, Yupu
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.665-679
    • /
    • 2015
  • The strain rate of reinforced concrete (RC) structures stimulated by earthquake action has been generally recognized as in the range from $10^{-4}/s$ to $10^{-1}/s$. Because both concrete and steel reinforcement are rate-sensitive materials, the RC beam-column joints are bound to behave differently under different strain rates. This paper describes an investigation of seismic behavior of RC beam-column joints which are subjected to large cyclic displacements on the beam ends with three loading velocities, i.e., 0.4 mm/s, 4 mm/s and 40 mm/s respectively. The levels of strain rate on the joint core region are correspondingly estimated to be $10^{-5}/s$, $10^{-4}/s$, and $10^{-2}/s$. It is aimed to better understand the effect of strain rates on seismic behavior of beam-column joints, such as the carrying capacity and failure modes as well as the energy dissipation. From the experiments, it is observed that with the increase of loading velocity or strain rate, damage in the joint core region decreases but damage in the plastic hinge regions of adjacent beams increases. The energy absorbed in the hysteresis loops under higher loading velocity is larger than that under quasi-static loading. It is also found that the yielding load of the joint is almost independent of the loading velocity, and there is a marginal increase of the ultimate carrying capacity when the loading velocity is increased for the ranges studied in this work. However, under higher loading velocity the residual carrying capacity after peak load drops more rapidly. Additionally, the axial compression ratio has little effect on the shear carrying capacity of the beam-column joints, but with the increase of loading velocity, the crack width of concrete in the joint zone becomes narrower. The shear carrying capacity of the joint at higher loading velocity is higher than that calculated with the quasi-static method proposed by the design code. When the dynamic strengths of materials, i.e., concrete and reinforcement, are directly substituted into the design model of current code, it tends to be insufficiently safe.

Comparison of Aerobic Fixed-film Process Response to Quantitative and Hydraulic Shock for the Same Increases in Mass Loading (호기성 고정생물막반응기에서 동일 질량부하의 수리학적 및 농도충격부하시 반응의 비교)

  • Ahn, Mee-Kyung;Lee, Kyu-Hoon
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.285-296
    • /
    • 1994
  • The objective of this study was to examine and compare to transient response to quantitative and hydraulic shocks which produce equal changes in mass rate of organic feed in aerobic fixed-film process. The general experimental approach was to operate the system at several growth rates under steady-state(pre-shock) conditions, then to apply step changes during day 3 in dilution rate(hydraulic shock) , or feed concentration(Quantitative shock) at the same organic mass loading rate. Performance was assessed in both the transient state and the new steady-state (post- shock). Shock load of different type did not produced equivalent disruptions of effluent quality for equal increases in mass loading rate. Based on effluent concentrations, a hydraulic and a Quantitative shock at the same mass loading caused equal increase in total effluent COD, but the increase was primarily a result of suspended solids the hydraulic shock and COD in the quantitative shock. The time which effluent COD came to peak values were about 32~48 hours at the low organic loads and 52 ~ 72 hours at the high organic loads, respectively A quantitative shock produced a much greater increase in effluent COD than did a hydraulic shock at the same mass loading. Mean and peak values of effluent concentration weve increased in 2.8~4.2 times at low organic loading rate, 5.2~6.6 times at the high organic loading rate, respectively. Key words : Aerobic fixed-film reactor, Quantitative shock, hydraulic shock, mass loading rate.

  • PDF