• Title/Summary/Keyword: different loading

Search Result 3,056, Processing Time 0.034 seconds

Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Young;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.505-516
    • /
    • 2009
  • The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF

Facile [11C]PIB Synthesis Using an On-cartridge Methylation and Purification Showed Higher Specific Activity than Conventional Method Using Loop and High Performance Liquid Chromatography Purification (Loop와 HPLC Purification 방법보다 더 높은 비방사능을 보여주는 카트리지 Methylation과 Purification을 이용한 손쉬운 [ 11C]PIB 합성)

  • Lee, Yong-Seok;Cho, Yong-Hyun;Lee, Hong-Jae;Lee, Yun-Sang;Jeong, Jae Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • $[^{11}C]PIB$ synthesis has been performed by a loop-methylation and HPLC purification in our lab. However, this method is time-consuming and requires complicated systems. Thus, we developed an on-cartridge method which simplified the synthetic procedure and reduced time greatly by removing HPLC purification step. We compared 6 different cartridges and evaluated the $[^{11}C]PIB$ production yields and specific activities. $[^{11}C]MeOTf$ was synthesized by using TRACERlab FXC Pro and was transferred into the cartridge by blowing with helium gas for 3 min. To remove byproducts and impurities, cartridges were washed out by 20 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ solution (pH 5.1) and 10 mL of distilled water. And then, $[^{11}C]PIB$ was eluted by 5 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ into the collecting vial containing 10 mL saline. Among the 6 cartridges, only tC18 environmental cartridge could remove impurities and byproducts from $[^{11}C]PIB$ completely and showed higher specific activity than traditional HPLC purification method. This method took only 8 ~ 9 min from methylation to formulation. For the tC18 environmental cartridge and conventional HPLC loop methods, the radiochemical yields were $12.3{\pm}2.2%$ and $13.9{\pm}4.4%$, respectively, and the molar activities were $420.6{\pm}20.4GBq/{\mu}mol$ (n=3) and $78.7{\pm}39.7GBq/{\mu}mol$ (n=41), respectively. We successfully developed a facile on-cartridge methylation method for $[^{11}C]PIB$ synthesis which enabled the procedure more simple and rapid, and showed higher molar radio-activity than HPLC purification method.

A Survey on the Break-down and Repair of the Power Tillers in Korea (동력경운기(動力耕耘機) 이용실태(利用實態) 조사분석(調査分析)(II) -고장(故障) 및 수리(修理)에 관(關)하여-)

  • Hong, Jong Ho;Lee, Chai Shik
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.28-38
    • /
    • 1981
  • A survey has been conducted to investigate the presents of breaks down and repair of power tiller for efficient use. Eight provinces were covered for this study. The results are summarized as follows. A. Frequency of breaks down. 1) Power tiller was breaken down 9.05 times a year and it represents a break down every 39.1 hours of use. High frequency of breaks down was found from the fuel and ignition system. For only these system, the number of breaks down were 2.02 and it represents 23.3% among total breaks down. It was followed by attachments, cylinder system, and traction device. 2) For the power tiller which was more than six years old, breaks down accured 37.7 hours of use and every 38.6 hours for the power tiller which was purchased in less than 2 years. 3) For the kerosene engine power tiller, breaks down occured every 36.8 hours of use, which is a higher value compared with diesel engine power tiller which break down every 42.8 hours of use. The 8HP kerosene engine power tiller showed higher frequency of break down compared with any other horse power tiller. 4) In October, the lowest frequency of break down was found with the value of once for every 51.5 hours of use, and it was followed by the frequency of break down in June. The more hours of use, the less breaks down was found. E. Repair place 1) 45.3% among total breaks down of power tiller was repaired by the owner, and 54.7% was repaired at repair shop. More power tiller were repaired at repair shop than by owner of power tiller. 2) The older the power tiller is, the higher percentage of repairing at the repair shop was found compared with the repairing by the owner. 3) Higher percentage of repairing by the owner was found for the diesel engine power tiller compared with the kerosene engine power tiller. It was 10 HP power tiller for the kerosene power tiller and 8 HP for the diesel engine power tiller. 4) 66.7% among total breaks down of steering device was repaired by the owner. It was the highest value compared with the percentage of repairing of any other parts of power tiller. The lowest percentage of repairing by owner was found for the attachments to the power tiller with the value of 26.5%. C. Cause of break down 1) Among the total breaks down of power tiller, 57.2% is caused by the old parts of power tiller with the value of 5.18 times break down a year and 34.7% was caused by the poor maintenance and over loading. 2) For the power tiller which was purchased in less than two years, more breaks down were caused by poor maintenance in comparison to the old parts of power tiller. 3) For the both 8-10 HP kerosene and diesel engine power tiller, the aspects of breaks down was almost the same. But for the 5 HP power tiller, more breaks down was caused by over loading in comparison to the old parts of power tiller. 4) For the cylinder system and traction device, most of the breaks down was caused by the old parts and for the fuel and ignition system, breaks down was caused mainly by the poor maintenance. D. Repair Cost 1) For each power tiller, repair cost was 34,509 won a year and it was 97 won for one hoar operation. 2) Repair cost of kerosene engine power tiller was 40,697 won a year, and it use 28,320 won for a diesel engine power tiller. 3) Average repair cost for one hour operation of kerosene engine power tiller was 103 won, and 86 won for a diesel engine power tiller. No differences were found between the horse power of engines. 4) Annual repair cost of cylinder system was 13,036 won which is the highest one compared with the repair cost of any other parts 362 won a year was required to repair the steering device, and it was the least among repair cost of parts. 5) Average cost for repairing the power tiller one time was 3,183 won. It was 10,598 won for a cylinder system and 1,006 won for a steering device of power tiller. E. Time requirement for repairing by owner. 1) Average time requirements for repairing the break down of a power tiller by owner himself was 8.36 hours, power tiller could not be used for operation for 93.58 hours a year due to the break down. 2) 21.3 hours were required for repairing by owner himself the break down of a power tiller which was more than 6 years old. This value is the highest one compared with the repairing time of power tiller which were purchased in different years. Due to the break down of the power tiller, it could not be used for operation annually 127.13 hours. 3) 10.66 hours were required for repairing by the owner himself a break down of a diesel engine power tiller and 6.48 hours for kerosene engine power tiller could not be used annually 99.14 hours for operation due to the break down and it was 88.67 hour for the diesel engine power tiller. 4) For both diesel and kerosene engine power tiller 8 HP power tiller required the least time for repairing by owner himself a break down compared with any other horse power tiller. It was 2.78 hours for kerosene engine power tiller and 8.25 hours fur diesel engine power tiller. 5) For the cylinder system of power tiller 32.02 hours were required for repairing a break down by the owner himself. Power tiller could not be used 39.30 hours a year due to the break down of the cylinder system.

  • PDF