This study focuses on the application of an active tuned mass damper (ATMD) for controlling the seismic response of an 11-story building. The control action is achieved by combination of a fuzzy logic controller (FLC) and Particle Swarm Optimization (PSO) method. FLC is used to handle the uncertain and nonlinear phenomena while PSO is used for optimization of FLC parameters. The FLC system optimized by PSO is called PSFLC. The optimization process of the FLC system has been performed for an 11-story building under the earthquake excitations recommended by International Association of Structural Control (IASC) committee. Minimization of the top floor displacement has been used as the optimization criteria. The results obtained by the PSFLC method are compared with those obtained from ATMD with GFLC system which is proposed by Pourzeynali et al. and non-optimum FLC system. Based on the parameters obtained from PSFLC system, a global controller as PSFLCG is introduced. Performance of the designed PSFLCG has been checked for different disturbances of far-field and near-field ground motions. It is found that the ATMD system, driven by FLC with the help of PSO significantly reduces the peak displacement of the example building. The results show that the PSFLCG decreases the peak displacement of the top floor by about 10%-30% more than that of the FLC system. To show the efficiency and superiority of the adopted optimization method (PSO), a comparison is also made between PSO and GA algorithms in terms of success rate and computational processing time. GA is used by Pourzeynali et al for optimization of the similar system.
Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
Earthquakes and Structures
/
v.16
no.6
/
pp.715-726
/
2019
Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.
Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
Earthquakes and Structures
/
v.22
no.5
/
pp.503-515
/
2022
This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.
Hwang, Inho;Ju, Minkwan;Sim, Jongsung;Lee, Jong Seh
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.5A
/
pp.685-690
/
2008
Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using hysteretic damper is shown to effectively protect structures against earthquakes. A mechanical model is determined that can effectively portray the behavior of a typical E-shape device. Comparison with experimental results for a hysteretic damper indicates that the model is accurate over a wide range of operating conditions and adequate for analysis. The seismic performance of hysteretic dampers are studied and compared with the conventional systems as a base isolation system. A five-story building is modeled and the seismic performance of the systems subjected to three different earthquake is compared. The results show that the hysteretic damper system can provide superior protection than the other systems for a wide range of ground motions.
Since design response spectrum does not reflect local soil characteristics, site specific response spectrum of observed ground motions appears relatively higher than design response spectrum at high frequency range. These problems have been pointed out from the domestic seismic design industry. Among various estimation methods, this study used the method H/V ratio of ground motion for estimating site amplification. This method has been extended to background noise, Coda waves and S waves recently for estimating site amplification. This study applied this method to the background noise and Coda wave energy. This study analysed more than 267 background noises from 15 macro earthquakes including main Fukuoka earthquake (2005/03/20, M=6.5) and then compared to results from S waves, at 8 main domestic seismic stations. The results showed that most of the domestic seismic stations gave similar results to those from S waves. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other studies using different method can give us much information about dynamic amplification of domestic sites characteristics and site classification.
The problem has been pointed out that the domestic design response spectrum does not reflect site amplification, particularly in the high frequency bands, including the fact that site specific response spectrum from the observed ground motions appears relatively higher than design response spectrum. Among various methods, this study applied H/V spectral ratio of ground motion for estimating site amplification. This method, originated from S waves and Rayleigh waves, recently has been extended to Coda waves and background noise for estimating site amplification. For limited time of periods, 4 electric substation sites had operated seismic stations at two separate locations (bedrock and borehole) within each substation site. H/V spectral ratio of S wave, Coda wave, and background noise, was applied to 36 accelerations of 3 macro earthquakes (Odaesan, Jeju and Gongju earthquakes), larger than magnitude 3.4. observed simultaneously at each bedrock location within 4 electric substation sites. Site amplifications at the bedrock location of 4 sites were compared among S wave, Coda wave energy, and background noise, and then compared to the previous results from the borehole location data. The site classification was also tried using resonancy frequency information at each site and location. The results suggested that all the electric substation sites showed similar site amplification patterns among S wave, Coda wave, and background noise. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other results using different method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.
Journal of the Earthquake Engineering Society of Korea
/
v.12
no.5
/
pp.47-56
/
2008
This study was performed to evaluate the effect of Response modification factors (R-factor) in 3-, 9- and 20- story steel Moment Resisting Frame (MRF) buildings. Each structure was designed using a R-factor of 8, as tabulated in the 2000 International Building Code provision (IBC 2000) and Korea Building Code (KBC) 2008. In order to evaluate the maximum and minimum performance expected for such structures, an upper bound and lower bound design were adopted for each model. Next, each analytical model was designed using different R-factors (8, 9, 10, 11, 12) and four different structural periods with the original fundamental period. For a detailed case study, a total of 150 analytical models were subjected to 20 ground motions representing a hazard level with a 2% probability of being exceeded in 50 years. In order to evaluate the performance of the structures, static push-over and non-linear time history analysis (NTHA) were performed, and displacement ductility demand was investigated to consider the ductility capacity of the structures. The results show that the dynamic behaviors for the 3- and 9-story buildings are relatively stable and conservative, while the 20-story buildings show a large displacement ductility demand due to dynamic instability factors. (e.g. P-delta effect and high mode effect)
Korea is classified into low and moderate seismic zone from the view-point of seismic hazard level. Korean seismic provisions has been developed based on UBC and ATC 3-06. Thus, in calculation of design base shear according to Korean provisions response modification factor (R) is included in the formula of design base shear. The major role of this factor is to reduce the elastic design base shear whereby structures can behave in inelastic range during design level earthquake ground motions(mean return period of 475 yrs.). R factor is assigned according to material and structural systems. In this study, R factor for bearing wall system is considered. Most of the walls of apartment buildings in Korea resist gravity and seismic loads simultaneously so that this wall system can be classified into bearing wall system. Structural details of these walls are different from those used in Japan and U.S.. They are all rectangular in sectional shape rather than barbell in shape, and also have special lateral reinforcement details at the boundaries of a wall. In Korean seismic design provisions(1988), two different values(3.0 and 3.5) of R factor are assigned to the bearing wall systems according to the wall details. However, in updated seismic provisions(2000), only one value is assigned to R factor(3.0) irrespective of wall details. In this study, the design base shear values in Korean seismic design provisions(1988, 2000), ATC 3-06, UBC are compared. Also experimental study was carried out to evaluate the seismic performance of structural walls. For this purpose, five test specimens were made which have special details used in apartment bearing wall systems in Korea. Based on the results of this study, response modification factor for bearing wall system is discussed.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.2
/
pp.619-629
/
2013
The objective of this study is to estimate shear wave velocity of earth dam materials using artificially generated vibration from blasting events and to verify its applicability. In this study, the artificial blasting and vibration monitoring were carried out at the site adjacent to Seongdeok dam, which is the first blasting test for an existing dam in Korea. The vibrations were induced by 4 different types of blasting with various depths of blasting boreholes and explosive charge weights. During the tests, the acceleration time histories were recorded at the bedrock adjacent to the explosion and the crest of the dam. From frequency analyses of acceleration histories measured at the crest, the fundamental frequency of the target dam could be evaluated. Numerical analyses varying shear moduli of earth fill zone were carried out using the acceleration histories measured at the bedrock as input ground motions. From the comparison between the fundamental frequencies calculated by numerical analyses and measured records, the shear wave velocities with depth, which are closely related to shear moduli, could be determined. It is found that the effect of different blasting types on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships, the applicability of suggested method is verified. Therefore, in case that the earthquake record is not available, the shear wave velocity of earth dam materials can be reasonably evaluated if blasting vibration test is allowed at the site adjacent to the dam.
The main objective of this paper is to evaluate the ductility and strength factors that are key components of the response modification factor for special steel moment-resistant frames. The ductility factors for special steel moment-resistant frames were calculated by multiplying the ductility factor for SDOF systems and the MDOF modification factors. Ductility factors were computed for elastic and perfectly plastic SDOF systems undergoing different levels of inelastic deformation and periods when subjected to a large number of recorded earthquake ground motions. Based on the results of the regression analysis, simplified expressions were proposed to compute the ductility factors. Based on previous studies, the MDOF modification factors were also proposed to account for the MDOF systems. Strength factors for special steel moment resisting frames were estimated from the results of the nonlinear static analysis. A total of 36 sample steel frames were designed to investigate the ductility and strength factors considering design parameters such as number of stories (4, 8, and 16 stories), seismic zone factors (Z = 0.075, 0.2, and 0.4), framing system (Perimeter Frames, PF and Distributed Frames, DF), and failure mechanism (Strong-Column Weak Beam, SCWB, and Weak-Column Strong-Beam, WCSB). The effects of these design parameters on the ductility and strength factors for special steel moment-resisting frames were investigated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.