• 제목/요약/키워드: difference of the secondary current

검색결과 76건 처리시간 0.026초

개선된 변류기 2차 전류 보상 알고리즘 (An Advanced Algorithm for Compensating the Secondary Current of CTs)

  • 강용철;임의재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.387-392
    • /
    • 2003
  • During a fault the remanent flux in a current transformer (CT) may cause severe saturation of its core. The resulting distortion in the secondary current could cause the mal-operation of a protection relay. This paper proposes an algorithm for compensating for the errors in the secondary current caused by CT saturation and the remanent flux. The algorithm compensates the distorted current irrespective of the level of the remanent flux. The second-difference function of the current is used to detect when the CT first starts to saturate. The negative value of the second-difference function at the start of saturation, which corresponds to the magnetizing current, is inserted into the magnetization curve to obtain the core flux at the instant. This value is then used as an initial flux to calculate the actual flux of the CT during the course of the fault with the secondary current. The magnetizing current is then estimated using the magnetization curve and the calculated flux value. The compensated secondary current can be estimated by adding the magnetizing current to the secondary current. Test results indicate that the algorithm can accurately compensate a severely distorted secondary current signal.

변류기 2차전류의 포화 여부 판단 알고리즘 (An Algorithm for Detecting CT Saturation)

  • 강용철;옥승훈;강상희
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권6호
    • /
    • pp.275-278
    • /
    • 2001
  • This paper presents an algorithm for detecting current transformer (CT) saturation. At the instants of beginning (or end) of saturation, as a magnetizing inductance of the core is changed significantly, the shapes of the secondary current are also changed significantly though secondary currents are continuous the instants. At the instants, the second-order of third-order difference of the secondary current has big values. Thus, the third difference of the current is used to detect the beginning/end of CT saturation in this paper. If the magnitude of third-order difference of the secondary current is larger than a threshold value, the CT begins of ends saturation at the instants. The proposed detection method is unaffected by the amount of residual flux. The results of various tests with residual flux from -80% to +80% indicate satisfactory performance of the method.

  • PDF

차분을 이용한 변류기 포화 검출 알고리즘의 저역통과 필터의 영향 분석 (Performance Analysis on a Low Pass Filter of a CT Saturation Detecting Algorithm Using Difference of the Secondary Current)

  • 강용철;옥승훈;윤재성;김대성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.249-251
    • /
    • 2001
  • This paper presents performance analysis on a low pass filter of a CT saturation detecting algorithm using difference. At the instants of beginning/end of saturation, the shapes of the secondary current are changed significantly though secondary currents are continuous. At the instants, the second-order or third-order difference of the secondary current has big values because of discontinuity of the first order difference. Thus, the third difference of the current is used to detect the beginning/end of CT saturation. An antialiasing low pass filter removes high frequency components and causes phase lag. A CT saturation detecting algorithm using difference of CT secondary currents is affected by the low pass filter. The algorithm is tested with cutoff frequencies of the filter for the two sampling rates of 64[S/C] and 32 [S/C]. The results of various test cases indicate satisfactory performance of the algorithm.

  • PDF

개선된 변류기 2차 전류 보상 알고리즘 (An Advanced Compensating Algorithm of the Secondary Current of CTs)

  • 강용철;임의재;윤재성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.213-215
    • /
    • 2002
  • This paper proposes an advanced compensating algorithm of the secondary current of CTs. The exiting compensating algorithm for the current transformers calculates magnetic flux using the magnetization curve. In such a case, it is difficult to compensate for distorted secondary current when a remanent flux exists in a core at the beginning of the calculation. To make up for the drawback in the existing compensating algorithm, the algorithm detects the instant of saturation using difference of the secondary current and estimates flux at the instant of the beginning of the first saturation. After that, the algorithm calculates flux and compensates for distorted secondary current.

  • PDF

변류기 포화 판단 알고리즘의 저역통과 필터에 대한 성능 분석 (Performance Analysis of a Lowpass Filter on a CT Saturation Detection Algorithm)

  • 강용철;옥승환;윤재성;강상희
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권10호
    • /
    • pp.495-501
    • /
    • 2002
  • A difference based current transformer (CT) saturation detection algorithm uses the third difference of a secondary current to detect the instants of the beginning/end of saturation. The third difference of a secondary current contains high frequency components when a CT is saturated. Thus, an effect of an anti-aliasing lowpass filter implemented in digital protection relays on the detection algorithm should be studied. This paper describes performance analysis of a lowpass filter on the CT saturation detection algorithm. The cutoff frequency of the lowpass filter is normally set to be half of a sampling frequency. In this Paper, two sampling frequencies of 3,840 (Hz) corresponding to 64 sample/cycle (s/c) and 1,920 (Hz) corresponding to 32 (s/c) are studied; the cutoff frequencies of the lowpass filters are set to be 1,920 (Hz), 960 (Hz) and 960(Hz), 480(Hz), respectively. And the proposed algorithm is verified by experiment. A 2nd order Butterworth filter is designed as a lowpass filter. The test results and experiment results clearly indicate that the saturation detection algorithm successfully detects the instants of the beginning/end of saturation even though a secondary current is filtered by the designed lowpass filters.

3개의 초전도 소자를 갖는 자속구속형 SFCL과 변압기형 SFCL의 특성 비교 (Comparison of Characteristics on the Flux-Lock and the Transformer Type SFCLs with Three Superconducting Units)

  • 이주형;최효상
    • 전기학회논문지P
    • /
    • 제58권1호
    • /
    • pp.79-84
    • /
    • 2009
  • In order to increase the capacity of the superconducting fault current limiter(SFCL), the current and voltage grades of the SFCL must be increased. As a method for the increase of the current and voltage grades of the SFCL, we compared the various characteristics between the flux-lock type SFCL "With three superconducting units connected in series and the transformer type SFCL using the transformer with three secondary circuits. One of three superconducting units had not quenched in the flux-lock type SFCL. Therefore, the unbalanced power burden happened because of the voltage difference generated by unbalanced quenching between the superconducting units. In the meantime, the three superconducting units were all quenched in the transformer type SFCL using the transformer, and the voltage difference generated between the superconducting units was decreased. Therefore, the difference of critical characteristics was complemented by distribution of fault current in accordance with the turn's ratio between primary and secondary windings. The unbalanced power burden of the superconducting units was reduced due to flux-share between the superconducting units in the transformer. In conclusion, the capacity increment of the SFCL using a transformer was easier due to equal distribution of voltages generated by simultaneous quench of the superconducting units. We think that the characteristics is improved more because of the decrease of saturation in the iron core if the secondary winding is increased in the SFCL using the transformer.

보상 알고리즘을 적용한 모선보호용 전류차동 계전기 (A Busbar Current Differential Relay with a Compensating Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.214-220
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

보상 알고리즘을 적용한 모선보호용 전류차동 계전기 (A Busbar Current Differential Relay with a Compensating Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.214-214
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

Fault Current Limiting Characteristics of Flux-lock Type SFCL with Several Secondary Windings

  • Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.193-197
    • /
    • 2005
  • We investigated fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL), which consisted of a primary winding and several secondary windings connected in series between $high-T_C$ superconducting (HTSC) thin films. Each YBCO thin film has a 2 mm wide and 42 cm long meander line with 14 stripes of different length. The power imbalance due to the slight difference of Ie between YBCO current limiting elements causes the significant power burden on YBCO element with lower $I_C$. We confirmed from our experiments that the mutual coupling between the primary winding and secondary windings of the flux-lock type SFCL reduced the power imbalance between YBCO current limiting elements compared with the resistive type SFCL connected in series.