• Title/Summary/Keyword: difference matrix

Search Result 963, Processing Time 0.027 seconds

Analytical solution for natural frequency of monopile supported wind turbine towers

  • Rong, Xue-Ning;Xu, Ri-Qing;Wang, Heng-Yu;Feng, Su-Yang
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.459-474
    • /
    • 2017
  • In this study an analytical expression is derived for the natural frequency of the wind turbine towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained from numerical or empirical method. The new expression is based on pure physical parameters and thus can be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. The results of the proposed expression are compared with the measured frequencies of six real or model turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed which might be attributed to the difference between the dynamic and static modulus of saturated soils. The proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical and the empirical formulas available in the literature.

Microstructure of Glass-ceramics Made from Bottom Ash Produced at a Thermal Power Plant (화력발전소 바닥재로 제조된 결정화 유리의 미세구조)

  • Kang, Seung-Gu
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Glass ceramics were made from coal bottom ash by adding CaO and $Li_2O$ as glass modifiers and $TiO_2$ as a nucleating agent in a process of melting and quenching followed by a thermal treatment. The surface of the glass ceramics has 1.6 times more $Li_2O$ compared to the inner matrix. When $TiO_2$ was not added or when only 2 wt% was added, the surface parts of the glass ceramics were crystalline with a thickness close to $130{\mu}m$. In addition, the matrixes showed only the glass phase and not the crystalline phase. However, doping of $TiO_2$ from 4 wt% to 10 wt% began to create small crystalline phases in the matrix with an increase in the quantity of the crystalline. The matrix microstructure of glass ceramics containing $TiO_2$ in excess of 8 wt% was a mixture of dark-gray crystalline and white crystalline parts. These two parts had no considerable difference in terms of composition. It was thought that the crystallization mechanism affects the crystal growth, direction and shape and rather than the existence of two types of crystals.

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.

The Electrical Resistivity of a SiCw/Al Alloy Composite with Temperature

  • Kim Byung-Geol;Dong Shang-Li;Park Su-Dong;Lee Hee-Woong
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.489-493
    • /
    • 2004
  • The electrical property of MMC is essentially important to some applications such as power transmission lines and cables, electronic and electrical components as well as electromagnetic shielding equipments. The behavior of electrical resistivity of $SiC_{w}/Al$ alloy composites under as-extruded and annealed conditions has been investigated within the temperature range from room temperature to $450^{\circ}C$. It can be seen that within entire temperature range, the electrical resistivity of composites was higher than that of an unreinforced matrix alloy under the same condition of either as-extrusion or annealing. The temperature dependence of both exhibited positive incline like a typical metal. The variation of electrical resistivity of an unreinforced matrix alloy with temperature from ambient temperature to $450^{\circ}C$ was nearly monotonous, while those of composites increased monotonously at low temperature and rose to a high level after about $250^{\circ}C or 275^{\circ}C$. The difference of these temperature dependences on electrical resistivity can be interpreted as qualitatively the interfaces of $SiC_{w}$ fibers and matrix, where act as nucleation sites.

Facture Prediction in SiC Fiber Reinforced $Si_3N_4$ Matrix Composites from Electrical Resistivity Measurements (전기저항측정에 의한 SiC섬유강화 $Si_3N_4$기 복합재료의 파괴예측)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 2000
  • SiC fiber reinforced $Si_3N_4$ matrix composites combined with electrical conductive phases of carbon fiber and WC powder fabricated by hot pressing at 1773K. The ability to predict fracture in the ceramic matrix composites was evaluated by measuring simultaneous load-deflection and electrical resistanc difference-deflection curves in four point bending tests. The changes in electrical resistance differences closely corresponded to the fracture behavior of the composites. Different electrical conductive phases are suited to predicting different stages and rates of fracture. These obsevations how that it is possible to perform "in situ" fracture detection in ceramic composites.

  • PDF

Assessment of Geosynthetic Properties of Rubber Reinforced Composites (고무강화 복합재료의 지반용 특성 평가)

  • Jeon, H.Y.
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.247-252
    • /
    • 1999
  • Rubber related geosynthetics(GS) as reinforcement and water barrier materials were manufactured by thermal bonding method and examined the their performance for applications to civil and environmental engineering fields. The spunbonded polyester nonwoven, fiber glass mat and fabric type geogrid of a high tenacity polyester filament were used as matrix and polyester film, elastomeric bitumen with SBS polymer and asphalt were used as reinforcements to manufacture the rubber related geosynthetics. A fiber glass mat and geogrid matrix GS showed more excellent mechanical properties and nonwoven and elastomeric bitumen matrix showed the more excellent permittivity. Softening points of rubber and asphalt mixture showed no difference and dimensional stability at high temperature, $120^{\circ}C$, represented no significant shrinkage. Resistance to ultraviolet of rubber related geosynthetics showed no visible alteration.

  • PDF

Damage identification of 2D and 3D trusses by using complete and incomplete noisy measurements

  • Rezaiee-Pajand, M.;Kazemiyan, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.149-172
    • /
    • 2014
  • Four algorithms for damage detection of trusses are presented in this paper. These approaches can detect damage by using both complete and incomplete measurements. The suggested methods are based on the minimization of the difference between the measured and analytical static responses of structures. A non-linear constrained optimization problem is established to estimate the severity and location of damage. To reach the responses, the successive quadratic method is used. Based on the objective function, the stiffness matrix of the truss should be estimated and inverted in the optimization procedure. The differences of the proposed techniques are rooted in the strategy utilized for inverting the stiffness matrix of the damaged structure. Additionally, for separating the probable damaged members, a new formulation is proposed. This scheme is employed prior to the outset of the optimization process. Furthermore, a new tactic is presented to select the appropriate load pattern. To investigate the robustness and efficiency of the authors' method, several numerical tests are performed. Moreover, Monte Carlo simulation is carried out to assess the effect of noisy measurements on the estimated parameters.

The Inertia Friction properties of the Carbon/Carbon Composites Manufactured Using a Coal-tar Pitch (콜타르 핏치를 이용하여 제조된 탄소/탄소 복합재의 관성제동 마찰특성)

  • 이진용;서동수;임연수;이승구;박종규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.740-748
    • /
    • 1998
  • The inertia friction properties of C/C composites manufactured by the processes of pressure and at-mospheric carbonizaton with a commerciallized and two kinds of modified coal-tar pitch as a matrix pre-cursor were investigated. The modifications of a pitch such as the introduction of mesophase and the ad-dition of sulphur into a raw pitch were not effective for a impregnation efficiency conducted in a vacuum and at the same time in a pressure of 5kg/cm2 due to the increase of the pitch viscosity. There was not a difference in the densification increment between the pitch modifications however it was revealed that a pressure carbonization was more advantageous than an atmospheric in the densification and the formation of anisotropic carbon matrix. The friction and wear propertis of C/C having higher degree of matrix cry-stallization higher density and hardness of friction surface showed superiority. As the braking energy was increased the friction coefficients were decreased and reached almost same level at the high kinetic energy of 99.6kJ. The wear trends at 99.6kJ were different from the behaviors of friction ceofficient under the same energy in which an oxidation wear is being considered along with a mechnical wear although the wear rates were almost similar to the friction coefficient at the low energy.

  • PDF

Expression of the Type IV Collagenase Genes and ras Oncogene in Various Human Tumor Cell Lines

  • Moon, A-Ree;Park, Sang-Ho;Lee, Sang-Hun
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.484-487
    • /
    • 1996
  • The matrix metalloproteinases (MMPs) are members of a unique family of proteolytic enzymes that degrade components of the extracellular matrix. Significant evidence has accumulated to directly implicate members of the MMPs in tumor invasion and metastasis formation. To investigate the correlation between ras oncogene and MMP gene expression in various tumor cells, we detected mRNAs for the ras, MMP-2 and MMP-9 (72 kD and 92 kD type IV collagenases, respectively) genes in nine human tumor cell lines. The ras gene was expressed in seven cell lines; MMP-2 in three; MMP-9 in two cell lines tested. There was no direct correlation between the ras oncogene and MMP expression. A clear difference in the mRNA expression between MMP-2 and MMP-9 was observed among the cell lines. As an approach to study the effect of the ras oncogene on metastasis, we examined the expressions of MMP-2 and MMP-9 in HT1080 cells transfected with the v-H-ras gene. MMP-9 expression was Significantly enhanced in the ras-transfected HT1080 cells compared with the nontransfectants while ras transfection did not affect the expression of MMP-2. These results suggest the possible inducing effect of the ras oncogene on the metastasis by activation of the MMP-9 gene in HT1080.

  • PDF

Fabrication, Microstructures and High-Strain-Rate Properties of TiC-Reinforced Titanium Matrix Composites

  • 신현호;박홍래;장순남
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.259-259
    • /
    • 1999
  • TiC ceramic particulate-reinforced titanium matrix composites were fabricated and the resultant densification, microstructure, and static and dynamic mechanical properties were studied. Comparing Ti with TiH₂powders as host materials for TiC ceramic reinforcement by pressureless vacuum sintering, TiH₂-started composites showed better sinterability and resistance to both elastic and plastic deformation than Ti-started ones. When TiH₂and TiH₂-45 vol.%TiC samples were hot pressed, TiH₂matrices transformed to alpha prime Ti and alpha Ti phase, respectively. It is interpreted that the diffusion of an alpha stabilizer carbon from TiC into the matrix is one of the plausible reasons far such a microstructural difference. The 0.2% offset yield strengths of the hot pressed TiH₂and TiH₂-45 vol.%TiC samples were 1008 and 1446 MPa, respectively, in a static compressive mode (strain rate of 1×$10^{-3}$/s). Dynamic compressive strengths of the samples were 1600 and 2060 MPa, respectively, at a strain rate of 4×10³/s.