• Title/Summary/Keyword: diet induced obesity model (DIO)

Search Result 13, Processing Time 0.023 seconds

Anti-Obesity and Lipid Lowering Effect of Discorea japonica Thunb. Fermented with Monascus in High-Fat Diet Induced Obese C57BL/6J Mice Model (고지방식이로 유도된 C57BL/6J 마우스 비만모델에서 참마홍국발효의 비만 억제 및 지질 저하 효과)

  • Oh, Deuk Chang;Kang, Soon Ah
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.526-536
    • /
    • 2021
  • This study was conducted to investigate the anti-obesity effect of Discorea Japonica Thunb. fermented with Monascus After inducing obesity by feeding hight fat diet (diet induced obesity model: DIO) for four weeks, each 8 rats were assigned to normal (Nor), high fat diet (HF), high fat diet containing orlistat (PC), high fat diet containing different concentration of Discorea Japonica Thunb. fermented with Monascus (UPDM_L, UPDM_H) and Discorea Japonica Thunb. (UPD) extract. Although the UPD, UPDM_L (ultrafine pulverized Discorea Japonica Thunb. fermented with Monascus: 400 mg/kg) and UPDM_H (DIO oral administration ultrafine pulverized Discorea Japonica Thunb. fermented with Monascus: 800 mg/kg) showed weight gain inhibition effects, the results of poor obesity inhibition rather than PC were confirmed. However, it showed a more effective weight loss effect in UPDM_H than UPD, and significantly reduced the weight of epididymal fat and subcutaneous fat. Furthermore, the possibility of anti-obesity effects of Discorea Japonica Thunb. fermented with Monascus can be confirmed by observing the effects of reducing serum total cholesterol, triglyceride and LDL concentrations, reducing ALT and AST levels, and inhibiting fat build-up in liver tissue. It is believed that Discorea Japonica Thunb. fermented with Monascus can be expected to utilize as a functional material that is important to improve anti-obesity and metabolic syndrome.

Ant-Obesity Effect of Coriandrum sativum L. Ethanol Extract in High Fat-Induced Obesity Animal Model (고수 에탄올 추출물의 고지방식이 비만 동물모델에서의 항비만효과)

  • Rak Won Lee;Soon Ah Kang
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.4
    • /
    • pp.296-308
    • /
    • 2023
  • This study investigated the anti-obesity effects of Coriandrum sativum L. ethanol extracts in a high fat diet-induced obesity model (DIO). We confirmed the anti-obesity effects by analysing the expression of the related proteins, weight gain, dietary intake, dietary efficiency, blood biochemistry, histological analysis and western blot analysis. After oral administration of Coriandrum sativumL. ethanol extracts at concentrations of 250 and 500 mg/kg, a significant improvement in dietary efficiency, reduction in weight gain, triglycerides, total cholesterol and LDL-cholesterol in blood lipid was observed for 8 weeks. In addition, improvement in blood glucose and metabolism confirmed through glucose tolerance test was observed. Further, the concentration of alanine transaminase (ALT) in blood was significantly decreased, which improved the fatty liver caused by high-fat diet intake as confirmed by liver tissue analysis. This phenomenon was confirmed to decrease the expression of fat accumulation-related PPARγ and FAS protein in the liver tissue. Especially, it is believed that FAS, a liposynthetic enzyme, has a stronger inhibitory effect than PPARγ. Therefore, Coriandrum sativum L. ethanol extract is thought to improve obesity by reducing blood lipids levels, improving glucose metabolism and inhibiting synthesis of the fat that accumulates in the liver in high-fat diet-induced obesity animal models.

Role of Hypothalamic Reactive Astrocytes in Diet-Induced Obesity

  • Sa, Moonsun;Park, Mingu Gordon;Lee, C. Justin
    • Molecules and Cells
    • /
    • v.45 no.2
    • /
    • pp.65-75
    • /
    • 2022
  • Hypothalamus is a brain region that controls food intake and energy expenditure while sensing signals that convey information about energy status. Within the hypothalamus, molecularly and functionally distinct neurons work in concert under physiological conditions. However, under pathological conditions such as in diet-induced obesity (DIO) model, these neurons show dysfunctional firing patterns and distorted regulation by neurotransmitters and neurohormones. Concurrently, resident glial cells including astrocytes dramatically transform into reactive states. In particular, it has been reported that reactive astrogliosis is observed in the hypothalamus, along with various neuroinflammatory signals. However, how the reactive astrocytes control and modulate DIO by influencing neighboring neurons is not well understood. Recently, new lines of evidence have emerged indicating that these reactive astrocytes directly contribute to the pathology of obesity by synthesizing and tonically releasing the major inhibitory transmitter GABA. The released GABA strongly inhibits the neighboring neurons that control energy expenditure. These surprising findings shed light on the interplay between reactive astrocytes and neighboring neurons in the hypothalamus. This review summarizes recent discoveries related to the functions of hypothalamic reactive astrocytes in obesity and raises new potential therapeutic targets against obesity.

Anti-inflammatory effects of Agar free-Gelidium amansii (GA) extracts in high-fat diet-induced obese mice

  • Lee, Yunkyoung;Oh, Hyunhee;Lee, Myoungsook
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.479-485
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Gelidium amansii (GA) contains plenty of agars and various biological substances, which make them a popular functional food to control body weight in previous studies. Unlike previous studies focused on agar in GA, objectives of this study were to investigate the effects of agar-free GA extract (AfGAE) on preventive and treatment models by using diets-induced obese (DIO) C57BL/6J mice. MATERIALS/METHODS: AfGAE were used to test their effects on the prevention (Exp-1) and treatment (Exp-2) against obesity after pilot study in DIO mice. The weight changes of the body and fat tissues and protein expression related to lipid metabolism and inflammation as well as plasma lipid profile and insulin were detected. RESULTS: Although AfGAE did not prevent long-term DIO, it did increase the levels of anti-inflammatory cytokine production and lipolysis protein. We further evaluated various doses of AfGAE in preventive and treatment models. As a result, our findings suggested that an AfGAE administration as a preventive model might be a better approach to achieve its anti-inflammatory and lipolysis-promoting effects in DIO mice. CONCLUSION: Although future studies to investigate the target materials such as polyphenols in AfGAE are required, the result suggests that GA without agar might be a therapeutic tool to improve health conditions related to inflammation.

The protective effects of steamed ginger on adipogenesis in 3T3-L1 cells and adiposity in diet-induced obese mice

  • Kim, Bohkyung;Kim, Hee-Jeong;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.15 no.3
    • /
    • pp.279-293
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The steamed ginger has been shown to have antioxidative effects and a protective effect against obesity. In the present study, we investigated the effects of ethanolic extract of steamed ginger (SGE) on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity (DIO) mouse model. MATERIALS/METHODS: The protective effects of SGE on adipogenesis were examined in 3T3-L1 adipocytes by measuring lipid accumulations and genes involved in adipogenesis. Male C57BL/6J mice were fed a normal diet (ND, 10% fat w/w), a high-fat diet (HFD, 60% fat w/w), and HFD supplemented with either 40 mg/kg or 80 mg/kg of SGE for 12 weeks. Serum chemistry was measured, and the expression of genes involved in lipid metabolism was determined in the adipose tissue. Histological analysis and micro-computed tomography were performed to identify lipid accumulations in epididymal fat pads. RESULTS: In 3T3-L1 cells, SGE significantly decreased lipid accumulation, with concomitant decreases in the expression of adipogenesis-related genes. SGE significantly attenuated the increase in body, liver, and epididymal adipose tissue weights by HFD. Serum total cholesterol and triglyceride levels were significantly lower in SGE fed groups compared to HFD. In adipose tissue, SGE significantly decreased adipocyte size than that of HFD and altered adipogenesis-related genes. CONCLUSIONS: In conclusion, steamed ginger exerted anti-obesity effects by regulating genes involved in adipogenesis and lipogenesis in 3T3-L1 cell and epididymal adipose tissue of DIO mice.

Effects of resveratrol on hepatic autophagy in high fat diet-induced obese mice (고지방식이로 유도한 비만 쥐에서 레스베라트롤이 자가포식에 미치는 영향)

  • Lee, Hee Jae;Yang, Soo Jin
    • Journal of Nutrition and Health
    • /
    • v.46 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Resveratrol (RSV) exerts several beneficial effects on metabolism and metaflammation-related diseases, including diabetes and non-alcoholic fatty liver disease (NAFLD). The purpose of this study is to investigate whether RSV affects pathophysiology of diabetes and NAFLD as well as hepatic autophagy in a rodent model of diet induced obesity (DIO). DIO was induced in a subset of C57BL/6J mice fed a high fat (HF, 45% kcal fat) diet. After six weeks of HF diet treatment, RSV (8 mg/kg/day) was administered via an osmotic pump for a period of four weeks. Therefore, the experimental groups were as follows: 1) lean control (CON), 2) HF diet-induced obese control (HF), and 3) HF_RSV. Body weight and food intake were monitored daily. Fasting glucose, insulin, and adiponectin in serum and lipid profiles in serum and liver were analyzed. In addition, the autophagic process was investigated using transmission electron microscopy (TEM). Body weight and food intake were not affected by RSV treatment. Impaired glucose control accompanied by DIO was recovered with RSV as shown by lower levels of fasting serum glucose and insulin when compared with HF obese controls. In addition, RSV treatment resulted in increased levels of serum adiponectin, however, indices of lipid profile in serum and livers were reduced. Results of TEM analysis showed that a HF diet induced excessive autophagy with the presence of double-membrane autophagosomes, which was ameliorated by RSV. The regulatory effect of RSV on autophagy was confirmed by the altered LC3-II formation, which increased with a HF diet and was decreased by RSV treatment. These results suggest that RSV treatment improves glucose control and lipid profile and these beneficial effects may be mediated by an altered autophagic process.

Testicular fat deposition attenuates reproductive performance via decreased follicle-stimulating hormone level and sperm meiosis and testosterone synthesis in mouse

  • Miao Du;Shikun Chen;Yang Chen;Xinxu Yuan;Huansheng Dong
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.50-60
    • /
    • 2024
  • Objective: Testicular fat deposition has been reported to affect animal reproduction. However, the underlying mechanism remains poorly understood. The present study explored whether sperm meiosis and testosterone synthesis contribute to mouse testicular fat deposition-induced reproductive performance. Methods: High fat diet (HFD)-induced obesity CD1 mice (DIO) were used as a testicular fat deposition model. The serum hormone test was performed by agent kit. The quality of sperm was assessed using a Sperm Class Analyzer. Testicular tissue morphology was analyzed by histochemical methods. The expression of spermatocyte marker molecules was monitored by an immuno-fluorescence microscope during meiosis. Analysis of the synthesis of testosterone was performed by real-time polymerase chain reaction and reagent kit. Results: It was found that there was a significant increase in body weight among DIO mice, however, the food intake showed no difference compared to control mice fed a normal diet (CTR). The number of offspring in DIO mice decreased, but there was no significant difference from the CTR group. The levels of follicle-stimulating hormone were lower in DIO mice and their luteinizing hormone levels were similar. The results showed a remarkable decrease in sperm density and motility among DIO mice. We also found that fat accumulation affected the meiosis process, mainly reflected in the cross-exchange of homologous chromosomes. In addition, overweight increased fat deposition in the testis and reduced the expression of testosterone synthesis-related enzymes, thereby affecting the synthesis and secretion of testosterone by testicular Leydig cells. Conclusion: Fat accumulation in the testes causes testicular cell dysfunction, which affects testosterone hormone synthesis and ultimately affects sperm formation.

Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice

  • Kang, Ji-Hye;Lee, Hyun-Ah;Kim, Hak-Ju;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: In this study, we investigated whether Gelidium amansii extract (GAE) ameliorates obesity in diet-induced obese (DIO) mice. MATERIALS/METHODS: The mice were maintained on a high-fat diet (HD) for 5 weeks to generate the DIO mouse model. And then mice fed HD plus 0.5% (GAE1), 1% (GAE2) or 2% (GAE3) for 8 weeks. RESULTS: After the experimental period, GAE-supplemented groups were significantly lower than the HD group in body weight gain and liver weight. GAE supplemented groups were significantly lower than the HD group in both epididymal and mesenteric adipose tissue mass. The plasma leptin level was significantly higher in the HD group than in GAE-supplemented groups. The leptin level of HD+GAE3 group was significantly lower than that of the HD+conjugated linoleic acid (CLA) group. In contrast, plasma adiponectin level of the HD group was significantly lower than those of HD+GAE2 and HD+GAE3 groups. The expression levels of adipogenic proteins such as fatty acid synthase, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer binding protein ${\alpha}$ in the GAE supplemented groups were significantly decreased than those in HD group, respectively. In addition, the expression levels of HD+GAE2 and HD+GAE3 groups are significantly decreased compared to those of HD+CLA group. On the contrary, the expression levels of hormone-sensitive lipase and phospho-AMP-activated protein kinase, proteins associated with lipolysis, were significantly increased in the GAE supplemented groups compared to those in the HD group. HD+GAE3 group showed the highest level among the GAE supplemented groups. CONCLUSIONS: These results suggested that GAE supplementation stimulated the expressions of lipid metabolic factors and reduced weight gain in HD-fed C57BL/6J obese mice.

Blueberry, blackberry, and blackcurrant differentially affect plasma lipids and pro-inflammatory markers in diet-induced obesity mice

  • Kim, Bohkyung;Lee, Sang Gil;Park, Young-Ki;Ku, Chai Siah;Pham, Tho X.;Wegner, Casey J.;Yang, Yue;Koo, Sung I.;Chun, Ock K.;Lee, Ji-Young
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.494-500
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Evidence indicates that berry anthocyanins are anti-atherogenic, antioxidant, and anti-inflammatory. However, berries differ vastly in their anthocyanin composition and thus potentially in their biological and metabolic effects. The present study compared hypolipidemic, antioxidant, and anti-inflammatory properties of blueberry (BB), blackberry (BK), and blackcurrant (BC) in a diet-induced obesity (DIO) mouse model. MATERIALS/METHODS: Male C57BL/6J mice were fed a high fat (HF; 35% fat, w/w) control diet or a HF diet supplemented with freeze-dried 5% BB, 6.3% BK or 5.7% BC for 12 weeks (10 mice/group) to achieve the same total anthocyanin content in each diet. Plasma lipids, antioxidant status and pro-inflammatory cytokines were measured. The expression of genes involved in antioxidant defense, inflammation, and lipid metabolism was determined in the liver, epididymal adipose tissue, proximal intestine, and skeletal muscle. Histological analysis was performed to identify crown-like structure (CLS) in epididymal fat pads to determine macrophage infiltration. RESULTS: No differences were noted between the control and any berry-fed groups in plasma levels of liver enzymes, insulin, glucose, ferric reducing antioxidant power, superoxide dismutase, and tumor necrosis factor ${\alpha}$. However, BK significantly lowered plasma triglyceride compared with the HF control and other berries, whereas BC significantly reduced F4/80 mRNA and the number of CLS in the epididymal fat pad, indicative of less macrophage infiltration. CONCLUSIONS: The present study provides evidence that BB, BK and BC with varying anthocyanin composition differentially affect plasma lipids and adipose macrophage infiltration in DIO mice, but with no differences in their antioxidant capacity and anti-inflammatory potential.

Anti-obese Effects and Signaling Mechanisms of Chaenomeles sinensis extracts in 3T3-L1 Preadipocytes and Obese Mice Fed a High-fat Diet (3T3L-1 지방전구세포와 고지방식이로 유도된 비만 마우스 모델에서 모과 추출물의 항비만 효과와 억제 기전)

  • Kim, Da-Hye;Kwon, Bora;Kim, Sang Jun;Kim, HongJun;Jeong, Seung-Il;Yu, Kang-Yeol;Kim, Seon-Young
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.457-469
    • /
    • 2017
  • Obesity is one of the most serious health problem because it induced numerous metabolic syndrome and increases the incidence of various disease, including diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. In 3T3-L1 adipocytes, increases in reactive oxygens species (ROS) occur with lipid accumulation. NADPH oxidase, producing superoxide anion, may contribute to the development of obesity-associated insulin resistance and type 2 diabetes. In this study, we elucidated the effect of Chaenomeles sinensis koehne extract (CSE) against the development of obesity and the inhibition mechanisms in 3T3-L1 preadiocytes. CSE decreased triglyceride content and inhibited the expression of adipogenic transcription factors including peroxisome proliferator-activated receptor $(PPAR){\gamma}$, CCAT/enhancer binding protein $(C/EBP){\alpha}$ and sterol regulatory element-binding protein (SREBP-1). In addition, CSE highly increased antioxidant activity in a dose-dependent manner. CSE remarkably reduced intracellular ROS increase and NAD(P)H oxidase activity, NOX1, NOX4, Rac1 protein expression, and phosphorylation of p47phox and p67phox We also studied the effect of CSE on weight gain induced by high-fat diet. The oral treatment of CSE (500 mg/kg, body weight) in diet-induced obese (DIO) mice showed decrease in triglyceride and adipocyte size. Therefore, these results indicate that the effect of CSE on anti-obese effects, adipocyte differentiation and reducing triglyceride contents as well as adipocyte size in obese mice, may be associated with inhibition of NAD(P)H oxidase-induced ROS production and adipose transcription factors. These results showed the potential to inhibit the obesity by CSE treatment through controlling the activation of NAD(P)H oxidase in vitro and in vivo obese model.