DOI QR코드

DOI QR Code

Role of Hypothalamic Reactive Astrocytes in Diet-Induced Obesity

  • Sa, Moonsun (KU-KIST Graduate School of Converging Science and Technology, Korea University) ;
  • Park, Mingu Gordon (KU-KIST Graduate School of Converging Science and Technology, Korea University) ;
  • Lee, C. Justin (KU-KIST Graduate School of Converging Science and Technology, Korea University)
  • Received : 2021.11.14
  • Accepted : 2022.01.12
  • Published : 2022.02.28

Abstract

Hypothalamus is a brain region that controls food intake and energy expenditure while sensing signals that convey information about energy status. Within the hypothalamus, molecularly and functionally distinct neurons work in concert under physiological conditions. However, under pathological conditions such as in diet-induced obesity (DIO) model, these neurons show dysfunctional firing patterns and distorted regulation by neurotransmitters and neurohormones. Concurrently, resident glial cells including astrocytes dramatically transform into reactive states. In particular, it has been reported that reactive astrogliosis is observed in the hypothalamus, along with various neuroinflammatory signals. However, how the reactive astrocytes control and modulate DIO by influencing neighboring neurons is not well understood. Recently, new lines of evidence have emerged indicating that these reactive astrocytes directly contribute to the pathology of obesity by synthesizing and tonically releasing the major inhibitory transmitter GABA. The released GABA strongly inhibits the neighboring neurons that control energy expenditure. These surprising findings shed light on the interplay between reactive astrocytes and neighboring neurons in the hypothalamus. This review summarizes recent discoveries related to the functions of hypothalamic reactive astrocytes in obesity and raises new potential therapeutic targets against obesity.

Keywords

Acknowledgement

This work was supported by the Institute for Basic Science (IBS), Center for Cognition and Sociality (IBS-R001-D2), and Global Ph.D. Fellowship programs (2017H1A2A1042357) of the NRF of Korea.

References

  1. Arcones, A.C., Cruces-Sande, M., Ramos, P., Mayor, F., Jr., and Murga, C. (2019). Sex differences in high fat diet-induced metabolic alterations correlate with changes in the modulation of GRK2 levels. Cells 8, 1464. https://doi.org/10.3390/cells8111464
  2. Argaw, A.T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J.N., Mahase, S., Dutta, D.J., Seto, J., Kramer, E.G., et al. (2012). Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122, 2454-2468. https://doi.org/10.1172/JCI60842
  3. Arruda, A.P., Milanski, M., Coope, A., Torsoni, A.S., Ropelle, E., Carvalho, D.P., Carvalheira, J.B., and Velloso, L.A. (2011). Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology 152, 1314-1326. https://doi.org/10.1210/en.2010-0659
  4. Baird, J.P., Choe, A., Loveland, J.L., Beck, J., Mahoney, C.E., Lord, J.S., and Grigg, L.A. (2009). Orexin-A hyperphagia: hindbrain participation in consummatory feeding responses. Endocrinology 150, 1202-1216. https://doi.org/10.1210/en.2008-0293
  5. Balland, E. and Cowley, M.A. (2017). Short-term high-fat diet increases the presence of astrocytes in the hypothalamus of C57BL6 mice without altering leptin sensitivity. J. Neuroendocrinol. 29, e12504. https://doi.org/10.1111/jne.12504
  6. Baltatzi, M., Hatzitolios, A., Tziomalos, K., Iliadis, F., and Zamboulis, C. (2008). Neuropeptide Y and alpha-melanocyte-stimulating hormone: interaction in obesity and possible role in the development of hypertension. Int. J. Clin. Pract. 62, 1432-1440. https://doi.org/10.1111/j.1742-1241.2008.01823.x
  7. Barson, J.R., Morganstern, I., and Leibowitz, S.F. (2013). Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int. J. Endocrinol. 2013, 983964. https://doi.org/10.1155/2013/983964
  8. Beck, B. (2006). Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1159-1185. https://doi.org/10.1098/rstb.2006.1855
  9. Bedner, P., Dupper, A., Huttmann, K., Muller, J., Herde, M.K., Dublin, P., Deshpande, T., Schramm, J., Haussler, U., Haas, C.A., et al. (2015). Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138, 1208-1222. https://doi.org/10.1093/brain/awv067
  10. Belanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724-738. https://doi.org/10.1016/j.cmet.2011.08.016
  11. Ben Haim, L., Carrillo-de Sauvage, M.A., Ceyzeriat, K., and Escartin, C. (2015). Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell. Neurosci. 9, 278. https://doi.org/10.3389/fncel.2015.00278
  12. Beutler, L.R., Corpuz, T.V., Ahn, J.S., Kosar, S., Song, W., Chen, Y., and Knight, Z.A. (2020). Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. Elife 9, e55909. https://doi.org/10.7554/elife.55909
  13. Borg, M.L., Omran, S.F., Weir, J., Meikle, P.J., and Watt, M.J. (2012). Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J. Physiol. 590, 4377-4389. https://doi.org/10.1113/jphysiol.2012.233288
  14. Bouret, S.G., Draper, S.J., and Simerly, R.B. (2004). Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797-2805. https://doi.org/10.1523/JNEUROSCI.5369-03.2004
  15. Brusilow, S.W., Koehler, R.C., Traystman, R.J., and Cooper, A.J. (2010). Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics 7, 452-470. https://doi.org/10.1016/j.nurt.2010.05.015
  16. Buckman, L.B., Thompson, M.M., Lippert, R.N., Blackwell, T.S., Yull, F.E., and Ellacott, K.L. (2015). Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol. Metab. 4, 58-63. https://doi.org/10.1016/j.molmet.2014.10.001
  17. Buckman, L.B., Thompson, M.M., Moreno, H.N., and Ellacott, K.L. (2013). Regional astrogliosis in the mouse hypothalamus in response to obesity. J. Comp. Neurol. 521, 1322-1333. https://doi.org/10.1002/cne.23233
  18. Bysted, A., Holmer, G., Lund, P., Sandstrom, B., and Tholstrup, T. (2005). Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects. Eur. J. Clin. Nutr. 59, 24-34. https://doi.org/10.1038/sj.ejcn.1602028
  19. Cai, D. and Liu, T. (2011). Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann. N. Y. Acad. Sci. 1243, E1-E39. https://doi.org/10.1111/j.1749-6632.2011.06388.x
  20. Cansell, C., Stobbe, K., Sanchez, C., Le Thuc, O., Mosser, C.A., Ben-Fradj, S., Leredde, J., Lebeaupin, C., Debayle, D., Fleuriot, L., et al. (2021). Dietary fat exacerbates postprandial hypothalamic inflammation involving glial fibrillary acidic protein-positive cells and microglia in male mice. Glia 69, 42-60. https://doi.org/10.1002/glia.23882
  21. Casse, F., Richetin, K., and Toni, N. (2018). Astrocytes' contribution to adult neurogenesis in physiology and Alzheimer's disease. Front. Cell. Neurosci. 12, 432. https://doi.org/10.3389/fncel.2018.00432
  22. Choi, H.B., Gordon, G.R., Zhou, N., Tai, C., Rungta, R.L., Martinez, J., Milner, T.A., Ryu, J.K., McLarnon, J.G., Tresguerres, M., et al. (2012). Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75, 1094-1104. https://doi.org/10.1016/j.neuron.2012.08.032
  23. Chun, H., Im, H., Kang, Y.J., Kim, Y., Shin, J.H., Won, W., Lim, J., Ju, Y., Park, Y.M., Kim, S., et al. (2020). Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H2O2(-) production. Nat. Neurosci. 23, 1555-1566. https://doi.org/10.1038/s41593-020-00735-y
  24. Chun, H. and Lee, C.J. (2018). Reactive astrocytes in Alzheimer's disease: a double-edged sword. Neurosci. Res. 126, 44-52. https://doi.org/10.1016/j.neures.2017.11.012
  25. Chun, H., Lim, J., Park, K.D., and Lee, C.J. (2022). Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model. Glia 70, 354-367. https://doi.org/10.1002/glia.24110
  26. Cohen, P.P. (1981). The ornithine-urea cycle: biosynthesis and regulation of carbamyl phosphate synthetase I and ornithine transcarbamylase. Curr. Top. Cell. Regul. 18, 1-19. https://doi.org/10.1016/B978-0-12-152818-8.50008-6
  27. Cowley, M.A., Smart, J.L., Rubinstein, M., Cerdan, M.G., Diano, S., Horvath, T.L., Cone, R.D., and Low, M.J. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480-484. https://doi.org/10.1038/35078085
  28. de Almeida, I.T., Cortez-Pinto, H., Fidalgo, G., Rodrigues, D., and Camilo, M.E. (2002). Plasma total and free fatty acids composition in human nonalcoholic steatohepatitis. Clin. Nutr. 21, 219-223. https://doi.org/10.1054/clnu.2001.0529
  29. de Git, K.C. and Adan, R.A. (2015). Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes. Rev. 16, 207-224. https://doi.org/10.1111/obr.12243
  30. Douglass, J.D., Dorfman, M.D., Fasnacht, R., Shaffer, L.D., and Thaler, J.P. (2017). Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol. Metab. 6, 366-373. https://doi.org/10.1016/j.molmet.2017.01.010
  31. Eng, L.F. and Ghirnikar, R.S. (1994). GFAP and astrogliosis. Brain Pathol. 4, 229-237. https://doi.org/10.1111/j.1750-3639.1994.tb00838.x
  32. Escartin, C., Galea, E., Lakatos, A., O'Callaghan, J.P., Petzold, G.C., Serrano-Pozo, A., Steinhauser, C., Volterra, A., Carmignoto, G., Agarwal, A., et al. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312-325. https://doi.org/10.1038/s41593-020-00783-4
  33. Escartin, C., Guillemaud, O., and Carrillo-de Sauvage, M.A. (2019). Questions and (some) answers on reactive astrocytes. Glia 67, 2221-2247. https://doi.org/10.1002/glia.23687
  34. Fan, W., Boston, B.A., Kesterson, R.A., Hruby, V.J., and Cone, R.D. (1997). Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165-168. https://doi.org/10.1038/385165a0
  35. Firl, N., Kienberger, H., Hauser, T., and Rychlik, M. (2013). Determination of the fatty acid profile of neutral lipids, free fatty acids and phospholipids in human plasma. Clin. Chem. Lab. Med. 51, 799-810. https://doi.org/10.1515/cclm-2012-0203
  36. Fuente-Martin, E., Garcia-Caceres, C., Granado, M., de Ceballos, M.L., Sanchez-Garrido, M.A., Sarman, B., Liu, Z.W., Dietrich, M.O., Tena-Sempere, M., Argente-Arizon, P., et al. (2012). Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J. Clin. Invest. 122, 3900-3913. https://doi.org/10.1172/JCI64102
  37. Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S.J., DelValle, J., and Yamada, T. (1993). Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246-8250. https://doi.org/10.1016/S0021-9258(18)53088-X
  38. Gao, Y., Layritz, C., Legutko, B., Eichmann, T.O., Laperrousaz, E., Moulle, V.S., Cruciani-Guglielmacci, C., Magnan, C., Luquet, S., Woods, S.C., et al. (2017). Disruption of lipid uptake in astroglia exacerbates diet-induced obesity. Diabetes 66, 2555-2563. https://doi.org/10.2337/db16-1278
  39. Garcia-Caceres, C., Balland, E., Prevot, V., Luquet, S., Woods, S.C., Koch, M., Horvath, T.L., Yi, C.X., Chowen, J.A., Verkhratsky, A., et al. (2019). Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7-14. https://doi.org/10.1038/s41593-018-0286-y
  40. Garcia-Caceres, C., Quarta, C., Varela, L., Gao, Y., Gruber, T., Legutko, B., Jastroch, M., Johansson, P., Ninkovic, J., Yi, C.X., et al. (2016). Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867-880. https://doi.org/10.1016/j.cell.2016.07.028
  41. Giles, C., Takechi, R., Mellett, N.A., Meikle, P.J., Dhaliwal, S., and Mamo, J.C. (2016). The effects of long-term saturated fat enriched diets on the brain lipidome. PLoS One 11, e0166964. https://doi.org/10.1371/journal.pone.0166964
  42. Gold, R.M. (1973). Hypothalamic obesity: the myth of the ventromedial nucleus. Science 182, 488-490. https://doi.org/10.1126/science.182.4111.488
  43. Gonzalez-Garcia, I., Ferno, J., Dieguez, C., Nogueiras, R., and Lopez, M. (2017). Hypothalamic lipids: key regulators of whole body energy balance. Neuroendocrinology 104, 398-411. https://doi.org/10.1159/000448432
  44. Gonzalez-Garcia, I. and Garcia-Caceres, C. (2021). Hypothalamic astrocytes as a specialized and responsive cell population in obesity. Int. J. Mol. Sci. 22, 6176. https://doi.org/10.3390/ijms22126176
  45. Gooley, J.J., Schomer, A., and Saper, C.B. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9, 398-407. https://doi.org/10.1038/nn1651
  46. Gruber, T., Pan, C., Contreras, R.E., Wiedemann, T., Morgan, D.A., Skowronski, A.A., Lefort, S., De Bernardis Murat, C., Le Thuc, O., Legutko, B., et al. (2021). Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 33, 1155-1170.e10. https://doi.org/10.1016/j.cmet.2021.04.007
  47. Gupta, S., Knight, A.G., Gupta, S., Keller, J.N., and Bruce-Keller, A.J. (2012). Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J. Neurochem. 120, 1060-1071. https://doi.org/10.1111/j.1471-4159.2012.07660.x
  48. Guyenet, S.J., Nguyen, H.T., Hwang, B.H., Schwartz, M.W., Baskin, D.G., and Thaler, J.P. (2013). High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. Brain Res. 1512, 97-105. https://doi.org/10.1016/j.brainres.2013.03.033
  49. Heo, J.Y., Nam, M.H., Yoon, H.H., Kim, J., Hwang, Y.J., Won, W., Woo, D.H., Lee, J.A., Park, H.J., Jo, S., et al. (2020). Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson's disease. Curr. Biol. 30, 276-291.e9. https://doi.org/10.1016/j.cub.2019.11.079
  50. Hidalgo, J., Florit, S., Giralt, M., Ferrer, B., Keller, C., and Pilegaard, H. (2010). Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat. Brain Behav. Immun. 24, 119-126. https://doi.org/10.1016/j.bbi.2009.09.002
  51. Hill, J.W. (2012). PVN pathways controlling energy homeostasis. Indian J. Endocrinol. Metab. 16(Suppl 3), S627-S636.
  52. Hong, J., Stubbins, R.E., Smith, R.R., Harvey, A.E., and Nunez, N.P. (2009). Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr. J. 8, 11. https://doi.org/10.1186/1475-2891-8-11
  53. Horvath, T.L., Diano, S., and Tschop, M. (2004). Brain circuits regulating energy homeostasis. Neuroscientist 10, 235-246. https://doi.org/10.1177/1073858403262151
  54. Horvath, T.L., Sarman, B., Garcia-Caceres, C., Enriori, P.J., Sotonyi, P., Shanabrough, M., Borok, E., Argente, J., Chowen, J.A., Perez-Tilve, D., et al. (2010). Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl. Acad. Sci. U. S. A. 107, 14875-14880. https://doi.org/10.1073/pnas.1004282107
  55. Hsuchou, H., He, Y., Kastin, A.J., Tu, H., Markadakis, E.N., Rogers, R.C., Fossier, P.B., and Pan, W. (2009). Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain 132, 889-902. https://doi.org/10.1093/brain/awp029
  56. Huszar, D., Lynch, C.A., Fairchild-Huntress, V., Dunmore, J.H., Fang, Q., Berkemeier, L.R., Gu, W., Kesterson, R.A., Boston, B.A., Cone, R.D., et al. (1997). Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131-141. https://doi.org/10.1016/S0092-8674(00)81865-6
  57. Jeong, J.H., Lee, D.K., and Jo, Y.H. (2017). Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol. Metab. 6, 306-312. https://doi.org/10.1016/j.molmet.2017.01.001
  58. Jin, S., Kim, K.K., Park, B.S., Kim, D.H., Jeong, B., Kang, D., Lee, T.H., Park, J.W., Kim, J.G., and Lee, B.J. (2020). Function of astrocyte MyD88 in high-fat-diet-induced hypothalamic inflammation. J. Neuroinflammation 17, 195. https://doi.org/10.1186/s12974-020-01846-w
  59. Jo, S., Yarishkin, O., Hwang, Y.J., Chun, Y.E., Park, M., Woo, D.H., Bae, J.Y., Kim, T., Lee, J., Chun, H., et al. (2014). GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat. Med. 20, 886-896. https://doi.org/10.1038/nm.3639
  60. Ju, Y.H., Bhalla, M., Hyeon, S.J., Oh, J.E., Yoo, S., Chae, U., Kwon, J., Koh, W., Lim, J., Park, Y.M., et al. (2021). Astrocytic urea cycle detoxifies Aβ-derived ammonia while impairing memory in Alzheimer's disease. BioRxiv, https://doi.org/10.1101/2021.10.15.464517
  61. Karmi, A., Iozzo, P., Viljanen, A., Hirvonen, J., Fielding, B.A., Virtanen, K., Oikonen, V., Kemppainen, J., Viljanen, T., Guiducci, L., et al. (2010). Increased brain fatty acid uptake in metabolic syndrome. Diabetes 59, 2171-2177. https://doi.org/10.2337/db09-0138
  62. King, B.M. (2006). The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav. 87, 221-244. https://doi.org/10.1016/j.physbeh.2005.10.007
  63. Kingsbury, K.J., Paul, S., Crossley, A., and Morgan, D.M. (1961). The fatty acid composition of human depot fat. Biochem. J. 78, 541-550. https://doi.org/10.1042/bj0780541
  64. Konturek, P.C., Konturek, J.W., Czesnikiewicz-Guzik, M., Brzozowski, T., Sito, E., and Konturek, S.J. (2005). Neuro-hormonal control of food intake: basic mechanisms and clinical implications. J. Physiol. Pharmacol. 56 Suppl 6, 5-25.
  65. Kristensen, P., Judge, M.E., Thim, L., Ribel, U., Christjansen, K.N., Wulff, B.S., Clausen, J.T., Jensen, P.B., Madsen, O.D., Vrang, N., et al. (1998). Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72-76. https://doi.org/10.1038/29993
  66. Lau, J., Farzi, A., Qi, Y., Heilbronn, R., Mietzsch, M., Shi, Y.C., and Herzog, H. (2018). CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis. Mol. Metab. 7, 102-118. https://doi.org/10.1016/j.molmet.2017.10.015
  67. Lee, C.H., Suk, K., Yu, R., and Kim, M.S. (2020). Cellular contributors to hypothalamic inflammation in obesity. Mol. Cells 43, 431-437. https://doi.org/10.14348/molcells.2020.0055
  68. Lee, D., Thaler, J.P., Berkseth, K.E., Melhorn, S.J., Schwartz, M.W., and Schur, E.A. (2013). Longer T(2) relaxation time is a marker of hypothalamic gliosis in mice with diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 304, E1245-E1250. https://doi.org/10.1152/ajpendo.00020.2013
  69. Lee, N., Sa, M., Hong, Y.R., Lee, C.J., and Koo, J. (2018). Fatty acid increases cAMP-dependent lactate and MAO-B-dependent GABA production in mouse astrocytes by activating a Galphas protein-coupled receptor. Exp. Neurobiol. 27, 365-376. https://doi.org/10.5607/en.2018.27.5.365
  70. Lee, S., Yoon, B.E., Berglund, K., Oh, S.J., Park, H., Shin, H.S., Augustine, G.J., and Lee, C.J. (2010). Channel-mediated tonic GABA release from glia. Science 330, 790-796. https://doi.org/10.1126/science.1184334
  71. Lemus, M.B., Bayliss, J.A., Lockie, S.H., Santos, V.V., Reichenbach, A., Stark, R., and Andrews, Z.B. (2015). A stereological analysis of NPY, POMC, Orexin, GFAP astrocyte, and Iba1 microglia cell number and volume in diet-induced obese male mice. Endocrinology 156, 1701-1713. https://doi.org/10.1210/en.2014-1961
  72. Liao, G.Y., Kinney, C.E., An, J.J., and Xu, B. (2019). TrkB-expressing neurons in the dorsomedial hypothalamus are necessary and sufficient to suppress homeostatic feeding. Proc. Natl. Acad. Sci. U. S. A. 116, 3256-3261. https://doi.org/10.1073/pnas.1815744116
  73. Liu, T., Zhang, L., Joo, D., and Sun, S.C. (2017). NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023. https://doi.org/10.1038/sigtrans.2017.23
  74. Liu, T.W., Heden, T.D., Matthew Morris, E., Fritsche, K.L., Vieira-Potter, V.J., and Thyfault, J.P. (2015). High-fat diet alters serum fatty acid profiles in obesity prone rats: implications for in vitro studies. Lipids 50, 997-1008. https://doi.org/10.1007/s11745-015-4061-5
  75. Liu, X. and Zheng, H. (2019). Leptin-mediated sympathoexcitation in obese rats: role for neuron-astrocyte crosstalk in the arcuate nucleus. Front. Neurosci. 13, 1217. https://doi.org/10.3389/fnins.2019.01217
  76. Martins, L., Seoane-Collazo, P., Contreras, C., Gonzalez-Garcia, I., Martinez- Sanchez, N., Gonzalez, F., Zalvide, J., Gallego, R., Dieguez, C., Nogueiras, R., et al. (2016). A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Rep. 16, 2231-2242. https://doi.org/10.1016/j.celrep.2016.07.045
  77. Meijer, A.J., Lamers, W.H., and Chamuleau, R.A. (1990). Nitrogen metabolism and ornithine cycle function. Physiol. Rev. 70, 701-748. https://doi.org/10.1152/physrev.1990.70.3.701
  78. Michetti, F., D'Ambrosi, N., Toesca, A., Puglisi, M.A., Serrano, A., Marchese, E., Corvino, V., and Geloso, M.C. (2019). The S100B story: from biomarker to active factor in neural injury. J. Neurochem. 148, 168-187. https://doi.org/10.1111/jnc.14574
  79. Miltenberger, R.J., Mynatt, R.L., Wilkinson, J.E., and Woychik, R.P. (1997). The role of the agouti gene in the yellow obese syndrome. J. Nutr. 127, 1902S-1907S. https://doi.org/10.1093/jn/127.9.1902S
  80. Miyata, S. (2015). New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front. Neurosci. 9, 390. https://doi.org/10.3389/fnins.2015.00390
  81. Montgomery, M.K., Hallahan, N.L., Brown, S.H., Liu, M., Mitchell, T.W., Cooney, G.J., and Turner, N. (2013). Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56, 1129-1139. https://doi.org/10.1007/s00125-013-2846-8
  82. Moraes, J.C., Coope, A., Morari, J., Cintra, D.E., Roman, E.A., Pauli, J.R., Romanatto, T., Carvalheira, J.B., Oliveira, A.L., Saad, M.J., et al. (2009). High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 4, e5045. https://doi.org/10.1371/journal.pone.0005045
  83. Morris, S.M., Jr. (2002). Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22, 87-105. https://doi.org/10.1146/annurev.nutr.22.110801.140547
  84. Moulle, V.S., Picard, A., Le Foll, C., Levin, B.E., and Magnan, C. (2014). Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 40, 29-33. https://doi.org/10.1016/j.diabet.2013.10.001
  85. Myers, M.G., Jr., Munzberg, H., Leinninger, G.M., and Leshan, R.L. (2009). The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab. 9, 117-123. https://doi.org/10.1016/j.cmet.2008.12.001
  86. Nam, M.H., Cho, J., Kwon, D.H., Park, J.Y., Woo, J., Lee, J.M., Lee, S., Ko, H.Y., Won, W., Kim, R.G., et al. (2020). Excessive astrocytic GABA causes cortical hypometabolism and impedes functional recovery after subcortical stroke. Cell Rep. 32, 107861. https://doi.org/10.1016/j.celrep.2020.107861
  87. Nillni, E.A. (2010). Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front. Neuroendocrinol. 31, 134-156. https://doi.org/10.1016/j.yfrne.2010.01.001
  88. Pandit, S., Neupane, C., Woo, J., Sharma, R., Nam, M.H., Lee, G.S., Yi, M.H., Shin, N., Kim, D.W., Cho, H., et al. (2020). Bestrophin1-mediated tonic GABA release from reactive astrocytes prevents the development of seizure-prone network in kainate-injected hippocampi. Glia 68, 1065-1080. https://doi.org/10.1002/glia.23762
  89. Posey, K.A., Clegg, D.J., Printz, R.L., Byun, J., Morton, G.J., Vivekanandan-Giri, A., Pennathur, S., Baskin, D.G., Heinecke, J.W., Woods, S.C., et al. (2009). Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 296, E1003-E1012. https://doi.org/10.1152/ajpendo.90377.2008
  90. Qin, C., Li, J., and Tang, K. (2018). The paraventricular nucleus of the hypothalamus: development, function, and human diseases. Endocrinology 159, 3458-3472. https://doi.org/10.1210/en.2018-00453
  91. Quadt, L., Critchley, H.D., and Garfinkel, S.N. (2018). The neurobiology of interoception in health and disease. Ann. N. Y. Acad. Sci. 1428, 112-128. https://doi.org/10.1111/nyas.13915
  92. Rossi, M.A., Basiri, M.L., McHenry, J.A., Kosyk, O., Otis, J.M., van den Munkhof, H.E., Bryois, J., Hubel, C., Breen, G., Guo, W., et al. (2019). Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding. Science 364, 1271-1274. https://doi.org/10.1126/science.aax1184
  93. Sa, M., Yoo, E.S., Koh, W., Park, M.G., Jang, H.J., Yang, Y.R., Lim, J., Won, W., Kwon, J., Bhalla, M., et al. (2022). Hypothalamic GABRA5-positive neurons control obesity via astrocytic GABA. BioRxiv, https://doi.org/10.1101/2021.11.07.467613
  94. Santamarina, A.B., Jamar, G., Mennitti, L.V., de Rosso, V.V., Cesar, H.C., Oyama, L.M., and Pisani, L.P. (2018). The use of jucara (Euterpe edulis Mart.) supplementation for suppression of NF-kappaB pathway in the hypothalamus after high-fat diet in Wistar rats. Molecules 23, 1814. https://doi.org/10.3390/molecules23071814
  95. Schneeberger, M., Gomis, R., and Claret, M. (2014). Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol. 220, T25-T46. https://doi.org/10.1530/JOE-13-0398
  96. Shim, H.S., Park, H.J., Woo, J., Lee, C.J., and Shim, I. (2019). Role of astrocytic GABAergic system on inflammatory cytokine-induced anxiety-like behavior. Neuropharmacology 160, 107776. https://doi.org/10.1016/j.neuropharm.2019.107776
  97. Tatemoto, K., Carlquist, M., and Mutt, V. (1982). Neuropeptide Y--a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296, 659-660. https://doi.org/10.1038/296659a0
  98. Thaler, J.P., Yi, C.X., Schur, E.A., Guyenet, S.J., Hwang, B.H., Dietrich, M.O., Zhao, X., Sarruf, D.A., Izgur, V., Maravilla, K.R., et al. (2012). Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153-162. https://doi.org/10.1172/JCI59660
  99. Thorburn, A.W. and Proietto, J. (1998). Neuropeptides, the hypothalamus and obesity: insights into the central control of body weight. Pathology 30, 229-236. https://doi.org/10.1080/00313029800169366
  100. Timper, K. and Bruning, J.C. (2017). Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis. Model. Mech. 10, 679-689. https://doi.org/10.1242/dmm.026609
  101. Timper, K., Del Rio-Martin, A., Cremer, A.L., Bremser, S., Alber, J., Giavalisco, P., Varela, L., Heilinger, C., Nolte, H., Trifunovic, A., et al. (2020). GLP-1 receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab. 31, 1189-1205.e13. https://doi.org/10.1016/j.cmet.2020.05.001
  102. Tupone, D., Madden, C.J., Cano, G., and Morrison, S.F. (2011). An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci. 31, 15944-15955. https://doi.org/10.1523/JNEUROSCI.3909-11.2011
  103. Verkhratsky, A., Zorec, R., and Parpura, V. (2017). Stratification of astrocytes in healthy and diseased brain. Brain Pathol. 27, 629-644. https://doi.org/10.1111/bpa.12537
  104. Wang, S.W., Wang, M., Grossman, B.M., and Martin, R.J. (1994). Effects of dietary fat on food intake and brain uptake and oxidation of fatty acids. Physiol. Behav. 56, 517-522. https://doi.org/10.1016/0031-9384(94)90295-X
  105. Wang, Y., Hsuchou, H., He, Y., Kastin, A.J., and Pan, W. (2015). Role of astrocytes in leptin signaling. J. Mol. Neurosci. 56, 829-839. https://doi.org/10.1007/s12031-015-0518-5
  106. Waterson, M.J. and Horvath, T.L. (2015). Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962-970. https://doi.org/10.1016/j.cmet.2015.09.026
  107. Xu, L., Emery, J.F., Ouyang, Y.B., Voloboueva, L.A., and Giffard, R.G. (2010). Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia 58, 1042-1049. https://doi.org/10.1002/glia.20985
  108. Yaswen, L., Diehl, N., Brennan, M.B., and Hochgeschwender, U. (1999). Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. 5, 1066-1070. https://doi.org/10.1038/12506
  109. Yi, C.X., Gericke, M., Kruger, M., Alkemade, A., Kabra, D.G., Hanske, S., Filosa, J., Pfluger, P., Bingham, N., Woods, S.C., et al. (2012). High calorie diet triggers hypothalamic angiopathy. Mol. Metab. 1, 95-100. https://doi.org/10.1016/j.molmet.2012.08.004
  110. Yoon, B.E. and Lee, C.J. (2014). GABA as a rising gliotransmitter. Front. Neural Circuits 8, 141. https://doi.org/10.3389/fncir.2014.00141
  111. Yoon, B.E., Woo, J., Chun, Y.E., Chun, H., Jo, S., Bae, J.Y., An, H., Min, J.O., Oh, S.J., Han, K.S., et al. (2014). Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J. Physiol. 592, 4951-4968. https://doi.org/10.1113/jphysiol.2014.278754
  112. Zhang, J., Chen, D., Sweeney, P., and Yang, Y. (2020). An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat. Commun. 11, 6326. https://doi.org/10.1038/s41467-020-20093-4
  113. Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai, H., and Cai, D. (2008). Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61-73. https://doi.org/10.1016/j.cell.2008.07.043
  114. Zhang, Y., Reichel, J.M., Han, C., Zuniga-Hertz, J.P., and Cai, D. (2017). Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure, and body weight. Cell Metab. 25, 1091-1102.e4. https://doi.org/10.1016/j.cmet.2017.04.002