• Title/Summary/Keyword: diesel NOx

Search Result 673, Processing Time 0.023 seconds

The Effect of Spray Flow Rate, Aspect Ratio, and Filling Rate of Wet Scrubber on Smoke Reduction (습식 스크러버의 분무유량, 형상비 및 충진율 변화가 스모크 저감에 미치는 영향)

  • Son, Kwun;Lee, Ju-Yeol;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • There has been increased amount of atmospheric pollutants including NOx and SOx which cause acid rain and photochemical smog as a result of increased use of fossil fuels. In order to reduce the amount of pollutants produced by fossil fuel, wet scrubber system is introduced in this experiment. Wet scrubber system is applied to a diesel engine (3,298 cc) and the amount of smoke is measured before and after the application in terms of aspect ratio, filling rate, and flow rate. The result showed a lot of smoke reduction when wet scrubber system was applied, and also the aspect ratios and water spray flow rate were the important factors to improve smoke reduction.

The Study for Effect of Biodiesel Antioxidants on Properties and Emissions (바이오디젤 산화안정제가 물성 및 배출가스에 미치는 영향 연구)

  • Kang, Hyungkyu;Song, Hoyoung;Park, Sooyoul;Oh, Sangki;Na, Byungki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.67-75
    • /
    • 2014
  • Biodiesel as alternative fuels has been widely studied due to biodiesel merits such as lower sulfur, lower aromatic hydrocarbon and higher oxygen content. But biodiesels could be easily oxidized by several conditions. In this study, various antioxidants such as propyl gallate, TBHA, TBHQ, DTBHQ, butyl-amin, aniline and pyrogallol were added in the biodiesel produced by the used cooking oil, then the material property test and the vehicle emissions test were conducted in accordance with test method. From the results of material property test, all antioxidants were suitable for the quality standard of density and kinematic viscosity, but Propyl gallate and Pyrogallol, as a type of Gallate additives, showed that the result of TAN increased rapidly according to the increase of the amount of additives. In the oxidation stability test, TBHQ, Butyl-amine and Aniline showed the excellent oxidation stability. Also, when considering the material property test, TBHQ was verified to the most excellent additives. In case of the vehicle emissions test, the testing was conducted by using the biodiesel added by TBHQ and was conducted by using two light duty diesel vehicles suitable for the EURO 4 and EURO 5 emission regulation. The result of testing showed that when the TBHQ was added, the amounts of CO, NOx and NMHC+NOx were decreased but the amount of $CO_2$ was increased.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구)

  • Kim, Gi-Bok;Choi, Il-Dong;Ha, Ji-Hoon;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

A Study on Lean Combustion Characteristics with Hydrogen Addition in a Heavy Duty Natural Gas Engine (대형 천연가스엔진에서의 수소 첨가에 의한 희박연소특성 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Won, Sang-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its high thermal efficiency and lower harmful emissions, including $CO_2$. However, the possibility of partial burn and misfire makes the benefits of natural gas fueled engine worse under lean burn operation condition, Hydrogen addition can promote the combustion characteristics while reduces emissions extremely. In this study, the effect of hydrogen addition on an engine performance was investigated. The results showed that thermal efficiency was increased due to the expansion of lean operation range under stable operation. NOx emission can be significantly reduced with the small increase in HC or CO emissions.

The Study on the Assesment Greenhouse Gases and Air Pollutants of Diesel Vehicle according to Ambient Temperature and Driving Condition (대기온도와 운전조건에 따른 디젤자동차의 차량 온실가스 및 대기오염물질 배출특성에 관한 연구)

  • Kim, Ki-Ho;Kim, Sung-Woo;Lee, Min-Ho;Oh, Sang-Gi;Lee, Seung-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.77-83
    • /
    • 2014
  • As the interest on the air pollution is gradually risen up at home and abroad, their vehicle emission regulations have been reinforcing by steps. PM regulation was also reinforced 4times for the last 13years and has been applied to SI vehicles after EURO 5. Additionally, knowing that small particles of PM can easily penetrate deep into lungs PM number was added on the regulation from EURO5+ and is applied to CI vehicles. Also, PN regulation is going to be applied to SI vehicles. But, because the regulation is appled to only a general test mode of each countries that is performed at $25{\pm}5^{\circ}C$, it is unclear whether the regulation can work on the other ambient temperature conditions or not. In this paper, to know that exhaust emission characteristics at the special conditions CI vehicles(CRDi w, w/o DPF) were tested using 5-cycle mode, NEDC mode at 5-ambient temperatures (35, 25, 0, -7 and -15) and the exhaust emission test results were discussed. The results show that the vehicle with DPF emits much low PM(and PM number) on all of the test mode. However, NOx of the other mode was emitted higher than regulation mode. Also. NOx was sharply increased according to decreasing Ambient Temperature.

A Study on the Characteristics of Intake Port Flow and Performance with Swirl Ratio Variance in a Turbocharged D.I. Diesel Engine (과급 디젤엔진에서 선회비 변경에 따른 흡기 포트유동 및 엔진성능 특성에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1185-1194
    • /
    • 2000
  • The characteristics of intake port flow and engine performance with swirl ratio variance in a turbocharged D.I. diesel engine were studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to satisfy performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer, NOx and smoke were measured by gas analyzer and smoke meter. The results of steady flow test are as follows; as the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. Also we realized that there is a trade-off that the increase of swirl ratio decreases mean flow coefficient and increases the Gulf factor. And the optimum parameters to meet performance and emission through engine test are as follows; the swirl ratio 2.43, injection timing BTDC 13oCA and compression ratio 15.5.

Speed-dependent Emission Characteristics of the Hazardous Air Pollutants from Diesel Medium-duty Trucks according to Emission Standards (배출허용기준 강화에 따른 차속별 경유 중형트럭의 유해대기오염물질 배출특성)

  • Hong, Heekyoung;Jung, Sungwoon;Son, Jihwan;Moon, Taeyoung;Lee, Sangeun;Moon, Sunhee;Yoon, Hyunjin;Kim, Jeongsoo;Kim, Jounghwa
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • This study was designed to investigate the emission characteristics of unregulated pollutants (Aldehyde, VOCs, PAHs) as well as regulated pollutants (CO, HC, NOx and PM) from diesel medium-duty trucks. The emission characteristics of unregulated and regulated pollutants were assessed based on regulation standards (EURO 4 and EURO 5) and intake weight (2.5 ton and 5 ton). The results show that unregulated and regulated pollutants remained almost unchanged at higher speeds but decreased at below 23.5 km/h. Reduction in unregulated and regulated pollutants was noticeable in vehicles of recent regulation standards and light intake weight. The analysis of aldehyde using UPLC showed that formaldehyde and acetaldehyde of aldehyde were most dominant. The GC/MS analysis showed that benzene, toluene, ethylbenzene and xylene of VOCs was over 80% followed by toluene, xylene, ethylbenzene and benzene. In addition, the analysis of PAHs using GC/TOF-MS indicated that bi- and tricyclic aromatic ring of aromatic compounds was 73% and 53% at 2.5 ton and 5 ton vehicles, respectively. The results of this study will be contributed to establish HAPs inventory.

A Study on the Monitoring System for Engine Control by Measuring Combustion Pressure Continuously in All Cylinders

  • Miharat Yoshinori;Maruyama Yasuo;Okada Yutaka;Kido Hachiro;Nishida Osami;Fujita Hirotsugu;Ito Masakazu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.713-721
    • /
    • 2005
  • A marine diesel engine should realize optimal operation efficiency while reducing NOx, PM (Particulate Matters) and other emissions. Fuel injection systems that use electronic control can become an effective means of achieving that objective. However. it still needs some accurate and instant information in order to bring its ability into full potential while sailing on the sea. The important information of them are a shaft torque and continuous combustion pressures of all cylinders. The shaft torque and the propeller thrust described in this paper are measured at an intermediate shaft by using a unique principle that one of two electromagnet coils oscillates a vibrating strip which the length changes with force and the other coil picks up the change of the frequency of the vibrating strip. For further reference, the shaft power meter multiplied the torque by the shaft revolution has already had about 750 sets of sales performance. The research presented in this paper started about ten years ago and is concerned with the development of a combustion pressure sensor that uses the same principle. Recently, the pressure sensor which bears continuous operation has been developed after a hard struggle, that is, the system that consists of a shaft horsepower meter, a propeller thrust meter and a combustion pressure sensor has been completed and has been shown to be reliable. This paper describes the configuration of this system, the material of the combustion pressure sensor, the principle of that, and the improving point of the sensor, and, we finally consider the use of this system.

A study on the application of DOE for optimization of blending oil with non-esterified biodiesel fuel at partial engine load (부분부하에서 비에스테르화 바이오디젤 5% 혼합유의 성능최적화를 위한 실험계획법 적용에 관한 연구)

  • Kim, Hee-Jung;Koh, Dae-Kwon;Yang, Ju-Ho;Koh, Sung-Wi;Kim, Yeong-Sik;Jeong, Tae-Young;Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2016
  • Non-esterified biodiesel fuel is cheaper than esterified that because of a simple manufacturing process that only consists of filtering. Applicability of this on diesel engine with electronic control system was accomplished, then optimization adopting a fractional factorial design and response surface methodology was carried out at 25% and 50% of engine load in this study. Pressure of common rail and injection timing mainly effected on responses as specific fuel oil consumption and nitrogen oxides regardless of engine load. Estimations were 310.3 g/kWh of specific fuel oil consumption and 237 ppm of nitrogen oxides at 25% load, and 233.2 g/kWh of specific fuel oil consumption and 730 ppm of nitrogen oxides at 50% load. Tests to verify these estimations were accomplished and as the results, specific fuel oil consumption was 300.4 g/kWh and NOx was 277 ppm at 25% load and 236.8 g/kWh and 573 ppm at 50% load.