• Title/Summary/Keyword: dies and molds

Search Result 136, Processing Time 0.022 seconds

Cure simulation in LED silicone lense using dynamic reaction kinetics method (승온 반응속도식을 이용한 LED용 실리콘 렌즈의 경화공정해석)

  • Song, Min-Jae;Hong, Seok-Kwan;Park, Jeong-Yeon;Lee, Jeong-Won;Kim, Heung-Kyu
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.46-49
    • /
    • 2014
  • Silicone is recently used for LED chip lense due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for curing process during silicone molding. For analysis of curing process, a dynamic cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the slow cure reduced abrupt reaction heat and it was predicted decrease of the residual stress.

  • PDF

A study on machining conditions on surface roughness in EPS End-milling (EPS 엔드밀 가공 시 표면 거칠기에 미치는 가공조건에 관한 연구)

  • Seo, Keum-Hee;Son, Min-Kyu;Yoon, Gil-Sang;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.46-50
    • /
    • 2017
  • EPS used in lost foam casting elastic modulus is extremely low. So it is necessary to derive machining conditions for effective cutting. Therefore this study were analyzed end-milling machining conditions to affecting the surface roughness of EPS foam. The machining conditions were set to depth, feed, and RPM at 3-level. And 18experimental conditions were derived using mixed orthogonal array. The most important condition for surface roughness is RPM. In addition, RPM machining condition range test that can realize surface roughness less than $10{\mu}m$ was performed. he range of RPM conditions is more than 15,000. However the range of RPM conditions is a condition that is difficult to use in actual field. In the future variance analysis and experiments are needed to derive the range of machining conditions available.

Improvement of Large Area Replicability Using DFSS in RTP System (DFSS 기법을 이용한 RTP 성형기의 대면적 전사성 향상)

  • Hong S.K.;Kim H.K.;Heo Y.M.;Kang J.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.571-572
    • /
    • 2006
  • RTP (rapid thermal pressing), one of micro-pattern replication techniques like hot embossing, is focused on achieving shorter cycle time. DFSS(Design for Six Sigma) has been applied in order to enhance the completeness of the development process for RTP system. According to DIDOV roadmap, we derived design concepts and subsequently decided the main performances, design factors, and components for RTP system. In the design process of RTP system using finite element analysis, it was realized that its structural characteristics affect large area replicability. Optimizing structural design factors, based on CAE, it was checked out that its large area replicability could be improved in a virtual test. Finally, we have a plan to validate the large area replicability of the developed RTP system, by performing micro-pattern replication tests with polymeric sheets.

  • PDF

Effects of Variation in Process Parameters on Cavity Pressure and Mechanical Strength of Molded Parts in LSR Injection Molding (LSR 사출성형의 공정조건 변화가 캐비티 압력 및 성형품의 기계적 강도에 미치는 영향)

  • Park, Hyung Pil;Cha, Baeg Soon;Lee, Jeong Won;Ko, Young Bae;Kim, Sang Gweon;Jung, Tae Sung;Kim, Dong Han;Rhee, Byung Ohk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.206-212
    • /
    • 2014
  • Liquid silicone rubber (LSR) has been widely used in automotive, electrical, and medical components. Thus, research on the use of LSR in the injection molding process is required to obtain high-quality and high-performance products. In this study, a mold was fabricated to examine the effects of the process parameters on the molding and mechanical properties of LSR parts. A computer-aided engineering analysis was used to optimize the air vent depth and curing temperature to decrease the flash at the air vents caused by the low viscosity of LSR. Temperature and pressure sensors were mounted in the mold to determine the effects of the process parameters on the temperature and pressure in the cavity. The tensile strength of the LSR parts was also examined in relation to the process parameters.

High Efficient Finishing Process for Press Dies by Cast Iron Bonded Diamond Pellet (1) (주철본드 다이아몬드 팰렛에 의한 프레스 금형의 고능률 연마가공 (1))

  • Hwang, Chan-Hae;Yoo, Kee-Tae;Jeong, Hae-Do;Ahn, Dae-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.84-90
    • /
    • 1999
  • The finishing process for dies and molds is directly related to finished surface quality, but many parts of process depend on human labor which needs much time and value. So automatic finishing machine has been produced for dies and molds, and applied widely for finishing process. Conventionally finishing machine has applied resin bonded finishing pad as a tool, but the removal ability of pad decreases greatly as finishing process goes on. In the finishing mechanism for dies and molds, finishing process is affected severely by cutting process, so can be divided into removing cusp and smoothing surface process. So, this study investigated the application of cast iron bonded diamond pellet for press dies, which is considered to have better characteristics than the other metal bonded pellets. The finishing characteristics were compared the between finishing pellet and pad. And finishing performance was appraised as the several cutting surfaces.

  • PDF

A development of automated polishing apparatus for surface quality and uniformity of multi-cavity preform injection mold core (Multi-cavity 프리폼 사출 금형 코어의 표면 품질 및 균일도 향상을 위한 연마 자동화 기구 개발)

  • Lee, Jeong-Won;Seo, Keum-Hee;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.41-45
    • /
    • 2014
  • Automated polishing apparatus based on the research have been developed. The research is improvement of polishing process for surface quality and uniformity improvement of preform injection mold core. Surface quality of preform core have influence on ejecting and product quality after injection molding. Thus, the current being made by hand to automate the polishing process, the surface of the preform to improve the quality and uniformity improvement. First made a division by analyzing manual process a step-by-step. And draw a mechanism for converting mechanical movement. Automated polishing apparatus for preform core was developed, through which shortens production time and were able to secure the safety of the worker.

  • PDF

A study on the thermal deformation of 3 cavity GMP mold for glass lens (GMP 공정용 3 cavity 유리 렌즈 금형의 열변형에 관한 연구)

  • Chang, Sung-Ho;Heo, Young-Moo;Shin, Gwang-Ho;Jung, Tae-Sung
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.38-42
    • /
    • 2008
  • Recently, the demands of digital camera and miniature camera module for mobile-phone is increased significantly. Lenses which is the core component of optical products are made by the injection molding(plastic lens) or GMP(glass lens). Plastic lens is not enough to improve the resolution and performance of optic parts. Therefore, the requirement of glass lens is increased because it is possible to ensure the high performance and resolution. In this paper, the thermal stress analysis of 3 cavity GMP mold for molding glass lens was performed for estimating the thermal stress and amount of deformation. Finally, the modification plan based on the analysis results was deducted.

  • PDF

A study on the characterization of shear surface according to shear rate and shear mechanism in high temperature shear process of boron steel (보론강 고온전단공정에서 전단속도 및 메커니즘에 따른 전단면 특성 파악에 관한 연구)

  • Jeon, Yong-Jun;Choi, Hyun-Seok;Lee, Hwan-Ju;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • With light vehicle weight gradually becoming ever more importance due to tightened exhaust gas regulations, hot-stamping processing using boron alloyed steel is being applied more and more by major automobile OEMs since process assures both moldability and a high strength of 1.5 GPa. Although laser trimming is generally applied to the post-processing of the hot-stamped process with high strength, there have been many studies of in-die hot trimming using shear dies during the quenching of material in order to shorten processing times. As such, this study investigated the effects of the Shear rate and Shear mechanism on shear processes during the quenching process of hot-stamping material. In case of pad variable, padding force is very weak compared with shear force, so it does not affect the shear surface. In case of shear rate, the higher the shear at high temperatures and the higher the friction effect. As a result the rollover and the fracture distribution decreased, and the burnish distribution increased. Therefore, it is considered that the shear quality is guaranteed when high shear rate is applied in high temperature shear process.

A study on the fatigue characteristics of SLS 3D printed PA2200 according to uniaxial cyclic tensile loading (SLS 3D 프린터를 이용하여 제작된 PA2200의 단축 반복 인장하중에 따른 피로 특성에 관한 연구)

  • Park, Jun-Soo;Jeong, Eui-Chul;Choi, Han-Sol;Kim, Mi-Ae;Yun, Eon-Gyeong;Kim, Yong-Dae;Won, Si-Tae;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the fatigue behavior and fatigue life characteristics of PA2200 specimens fabricated by SLS 3D printer were studied. Fatigue tests were performed according to the standard specification (ASTM E468) and fatigue life curves were obtained. In order to perform the fatigue test, mechanical properties were measured according to the test speed of the simple tensile test, and the self-heating temperature of the specimen according to the test speed was measured using an infrared temperature measuring camera in consideration of heat generation due to plastic deformation. There was no significant difference within the set test speed range and the average self-heating temperature was measured at 38.5 ℃. The mechanical strength at the measured temperature showed a relatively small difference from the mechanical strength at room temperature. Fatigue test conditions were established through the preceding experiments, and the loading conditions below the tensile strength at room temperature 23 ℃ were set as the cyclic load. The maximum number of replicates was less than 100,000 cycles, and the fracture behavior of the specimens with the repeated loads showed the characteristics of Racheting. It was confirmed that SLS 3D printing PA2200 material could be applied to the Basquin's S-N diagram for the fatigue life curve of metal materials. SEM images of the fracture surface was obtained to analyze the relationship between the characteristics of the fracture surface and the number of repetitions until failure. Brittle fracture, crazing fracture, grain melting, and porous fracture surface were observed. It was shown that the larger the area of crazing damage, the longer the number of repetitions until fracture.

A study on the effects of polymer core gate sizes on thickness shrinkage rate (폴리머코어 게이트 크기 변화가 두께 방향 수축률에 미치는 영향에 대한 연구)

  • Choi, Han-Sol;Jeong, Eui-Chul;Park, Jun-Soo;Kim, Mi-Ae;Chae, Bo-Hye;Kim, Sang-Yun;Kim, Yong-Dae;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, the variation of the shrinkage in the thickness direction of the molded parts according to the gate size of the polymer core fabricated through the 3D printer using the SLS method was studied. The polymer cores are laser sintered and the powder material is nylon base PA2200. The polymer cores have lower heat transfer rate and rigidity than the metal core due to the characteristics of the material. Therefore, the injection molding test conditions are set to minimize the deformation of the core during the injection process. The resin used in the injection molding test is a PP material. The packing condition was set to 80, 90 and 100% of the maximum injection pressure for each gate size. The runner diameter used was ∅3mm, and the gates were fabricated in semicircle shapes with cross sections 1, 2, and 3 ㎟, respectively. Thickness measurement was performed for 10 points at 2.5 mm intervals from the point 2.5 mm away from the gate, and the shrinkage to thickness was measured for each point. The shrinkage rate according to the gate size tends to decrease as the cross-sectional area decreases as the maximum injection pressure increases. The average thickness shrinkage rate was close to 0% when the packing pressure was 90% for the gate area of 1mm2. When the holding pressure was set to 100%, the shrinkage was found to decrease by 3% from the standard dimension due to the over-packing phenomenon. Therefore, the smaller the gate, the more closely the molded dimensions can be molded due to the high pressure generation. It was confirmed that precise packing process control is necessary because over-packing phenomenon may occur.