• Title/Summary/Keyword: dielectric waveguide

Search Result 209, Processing Time 0.025 seconds

Design of A Dielectric-Slab Polarizer in The Circular Waveguide (유전체판을 이용한 원형 도파관 편파기의 설계)

  • 김영민;안병철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.87-90
    • /
    • 2000
  • In this paper. we present a method for a systematic design of a dielectric slab polarizer in the circular waveguide. This structure is realized using a tapered dielectric slab inside a circular waveguide. Commercial software is used to obtain the equivalent dielectric constant of the circular waveguide partially filled with a dielectric slab. The length of the tapered region is determined so that the reflection from the dielectric slab is sufficiently low. A polarizer operating at 10 GHz band is designed, fabricated and tested.

  • PDF

The Field Analysis of Dielectric Waveguide Gratings (유전체 도파관 Grating의 필드 해석)

  • Chung, Joong Sung;Lee, Hae Sun;Yun, Sang Won;Chang, Ik Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.15-19
    • /
    • 1987
  • Bandstop characteristics of dielectric waveguide gratings are investigated using the modal approach. First, single step discontinuity of the dielectric waveguide is analyzed in terms of the mode matching method. Then by cascading those discontinuities characteristics of dielectric waveguide gratings are derived. Experimental results at X-band show good agreement with theoretical ones.

  • PDF

Layered-Type Dielectric Waveguide Filter Using Ceramic (세라믹을 이용한 적층형 유전체 도파관 필터)

  • Jang, Young-Soo;Kim, Jong-Chel;Kim, Seung-Wan;Lee, Kie-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2013
  • Layered-type dielectric waveguide filters were designed. As the order of layers increased the fabrication process for dielectric waveguide filters which the resonator parts were connected by the lateral direction has many difficulties. The proposed structure in this report was designed based on the layered-type for the some parts of resonators. The size of layered-type dielectric waveguide filters installed on the PCB surface were reduced at 25% as compared with the usual waveguide filters by using a relative dielectric constant 22.

Design of Waveguide Dielectric Rod Antenna for Shaping, FTEP (Flat-topped Element Pattern) for HAPS

  • Kim Yang Su;Kang Byung Su;Ku Bon lun
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.880-882
    • /
    • 2004
  • This paper presents the design and simulation results of 7 waveguide dielectric rod array antennas for 7 channel DBF(Digital beamformer) receivers for stratospheric system. A waveguide. dielectric antenna type, which has FTEP(Flat-toped element pattern) to manufacture easily. Also, the calculated element patterns according to the permittivity are compared. The designed antenna will be used for generating multibeam radiation pattern by means DBF.

  • PDF

A Study of Dielectric Waveguide Bandpass Filter (유전체 도파관 대역통과 필터에 관한 연구)

  • Park, Dong-Chul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.2
    • /
    • pp.178-181
    • /
    • 1986
  • Dielectric waveguide gratings of the image-guide type can be made by periodically cutting notches on the sides or in the top is the image guide. In this paper modeling of grattings using a transmission-line equivalent circuit with equal line lenghth is biscussed, and systematic design procedure of dielectric-waveguide bandpass filter using coupled gratings is presented. It is shown that experimental results is in excellent agreement with the computed response.

  • PDF

A Permittivity Measurement of Dielectric Slabs Using a Parallel Plate Waveguide (평행판 도파관을 이용한 유전율 측정 방법)

  • Cho, Gyo-Yeong;Park, Wee-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.199-203
    • /
    • 2012
  • This paper introduces a simple new procedure approach to determine the permittivity of dielectric slabs. The method uses a parallel plate waveguide which supports a TEM mode. The presence of the dielectric slab placed at the bottom of the waveguide makes the speed of the TEM wave slower. The relationship between the change of the speed and the permittivity of the dielectric slab allows the determination of the permittivity. The relationship is analyzed electromagnetically, and the results of measurements are in good agreement with the analysis.

60 GHz Band Non-Radiative Dielectric Waveguide Mixer having the Waveguide Directional Coupler (도파관 방향성 결합기를 갖는 60 GHz 대역 Non-Radiative Dielectric 도파관 혼합기)

  • Yoo, Young-Geun;Choi, Jae-Ha
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.397-403
    • /
    • 2008
  • In this paper, the mixer was implemented in the non-radiative dielectric waveguide that is the main component of 60 GHz band radio telecommunications equipment which a demand increases for the purpose of point-to-point communication network. As to the manufacture of the non-radiative dielectric waveguide mixer, it was the implementation of the dielectric line combiner to be most difficult. The thing which that gives shape to the curvature which is the dielectric line determined and the to place in the exact interval thing are easy. For this reason, it was very difficult to make in order to have the regular performance in the case of the mixer having the dielectric line combiner. In this paper, since the dielectric line combiner was replaced with the waveguide directional coupler and the manufacture was possible through a processing it had the characteristic that a combiner is fixed. In result, the productivity of a mixer was innovatively improved. The design frequency of the mixer implemented through this paper RF and LO are $51{\sim}64\;GHz$. IF Is $DC{\sim}\;GHz2$. The down conversion loss toward the RF input of $60{\sim}62\;GHz$ was measured by $10{\pm}1\;dB$ in the condition that LO is 10 dBm, 60 GHz.

Analysis of circular waveguide transformer using FDTD (원형 도파관 정합기의 FDTD에 의한 해석)

  • 이동국;홍재표
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • The finite-difference time-domain (FDTD) method is used to analyze circular waveguide transformer in order to match different two waveguides. 2-dimensional cylindrical FDTD algorithm is applied for rotationally symmetric. The transformer is inserted at a circular-to-circular waveguide junction and two type transformers are proposed. One is a partially dielectric filled circular waveguide type and the other is filled a tapered circular dielectric rod. The numerical results are derived for various structure parameters, such as transformer length. dielectric diameter and waveguide diameter.

  • PDF

A Study on the Rectangular Waveguide Phase-Shifter Partially Loaded with a Rectangular Dielectric Slab (구형 유전체판이 삽입된 구형도파관 이상기에 관한 연구)

  • 박병우;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.10
    • /
    • pp.850-856
    • /
    • 1990
  • Generally, the waveguide phase-shifter has been analyzed by the modal expansion method. We can not apply this method in the case which is difficult to choose a nenerating function. In this paper, we are analyzed the rectangular waveguide phase shifter using the perturbation method. When the depth of dielectric slab is smaller then one half of the waveguide height, the experimental results are well agreed with the calculated values by this method.

  • PDF

Optimal Design of Dielectric-Filled Plasmonic Slot Waveguide with Genetic Algorithm

  • Kim, Daekeun;Jung, Jaehoon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.70-75
    • /
    • 2012
  • An optimization methodology for designing a dielectric-filled plasmonic slot waveguide is presented. The genetic algorithm combined with a rigorous analysis based on the finite element method is used to optimize a nano-scaled plasmonic slot waveguide to have high mode confinement and a long propagation length, for which the objective function is defined as a figure of merit combining both propagation parameters.