Browse > Article
http://dx.doi.org/10.3807/JOSK.2012.16.1.070

Optimal Design of Dielectric-Filled Plasmonic Slot Waveguide with Genetic Algorithm  

Kim, Daekeun (Department of Mechanical Engineering, Dankook University)
Jung, Jaehoon (Department of Electronics and Electrical Engineering, Dankook University)
Publication Information
Journal of the Optical Society of Korea / v.16, no.1, 2012 , pp. 70-75 More about this Journal
Abstract
An optimization methodology for designing a dielectric-filled plasmonic slot waveguide is presented. The genetic algorithm combined with a rigorous analysis based on the finite element method is used to optimize a nano-scaled plasmonic slot waveguide to have high mode confinement and a long propagation length, for which the objective function is defined as a figure of merit combining both propagation parameters.
Keywords
Surface plasmon polariton; Waveguide; Genetic algorithm;
Citations & Related Records
연도 인용수 순위
1 Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, London, UK, 1996).
2 K. Lee and J. Jung, "Design of plasmonic slot waveguide with high localization and long propagation length," J. Opt. Soc. Korea 15, 305-309 (2011).   과학기술학회마을   DOI   ScienceOn
3 A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, "Simulations of hybrid long-range plasmon modes with application to $90^{\circ}$ bends," Opt. Lett. 32, 2354-2356 (2007).   DOI   ScienceOn
4 P. Berini, "Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons," J. Appl. Phys. 102, 033112 (2007).   DOI   ScienceOn
5 R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, "Analysis of hybrid dielectric plasmonic waveguides," IEEE J. Select. Topics Quantum Electron. 14, 1496-1501 (2008).   DOI   ScienceOn
6 J. P. Guo and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Express 14, 12409-12418 (2006).   DOI
7 J. P. Guo and R. Adato, "Control of 2D plasmon-polariton mode with dielectric nanolayers," Opt. Express 16, 1232-1237 (2008).   DOI
8 R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).   DOI
9 N. N. Feng, M. L. Brongersma, and L. D. Negro, "Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 $\mu{m}$," IEEE J. Quantum Electron. 43, 479-485 (2007).   DOI   ScienceOn
10 E. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, USA, 1985).
11 R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007).   DOI
12 A. Hosseini, A. Nieuwoudt, and Y. Massoud, "Optimizing dielectric strips over a metallic substrate for subwavelength light confinement," IEEE Photon. Technol. Lett. 19, 522-524 (2007).   DOI   ScienceOn
13 R, Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).   DOI   ScienceOn
14 W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).   DOI   ScienceOn
15 P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006).   DOI
16 S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators,"Nature 440, 508-511 (2006).   DOI   ScienceOn
17 P. Berini, "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys. 10, 105010 (2008).   DOI   ScienceOn
18 J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008).   DOI
19 J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffractionlimited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).   DOI   ScienceOn
20 S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).   DOI   ScienceOn
21 T. Holmgaard and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, 245405 (2007).   DOI   ScienceOn