• Title/Summary/Keyword: dielectric resonator filter

Search Result 70, Processing Time 0.027 seconds

Design of Phase Locking Loopfilter Using Sampling Phase Detector for Ku-Band Dielectric Resonator Oscillator (Ku-대역 유전체 공진기 발진기의 Sampling Phase Detector를 이용한 위상 고정 루프 필터 설계 및 제작)

  • Badamgarav, O.;Yang, Seong-Sik;Oh, Hyun-Seok;Lee, Man-Hee;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1147-1158
    • /
    • 2008
  • In this paper, we designed a phase-looking circuit that locks the 16.8 GHz VTDRO to a 700 MHz SAW oscillator using SPD as a phase detector Direct phase locking with loop filter alone causes the problem of lock time, so VTDRO is phase leered by loop filter with the aid of time varying square wave current generator. The current generator is related to the loop filter and needs the systematic toning. In this paper, a systematic design of the current generator and loop filter is presented. The fabricated PLDRO shows a stabilized frequency of 16.8 GHz, a output power 6.3 dBm, and a phase noise of -101 dBc/Hz at the 100 kHz offset.

10 Gbit/s Timing recovery circuit using temperature compensated dielectric resonantor filter (온도보상된 유전체공진기 필터를 이용한 10Gbit/s 클럭추출회로)

  • 송재호;유태환;박문수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.78-83
    • /
    • 1996
  • A timing recovery circuit of 10 Gbit/s optical receiver is described. The circuit consists of a passive NRZ-to-PRZ circuit, a dielectric resonator filter (DRF) and a narrow band amplifier, which for the first time adopted a temperature compensation technique using the tempareature characteristics of DR. The experimental results showed an output clock phase variation of less than ${\pm}$6 degree over the operating temperature range form 0$^{\circ}C$ to 75$^{\circ}C$ and measured maximum rms jitters of less than 2 phs with the resonance detunings of up to ${\pm}$10 MHz. These experimental results show that the circuit is a suitable for 10 Gbit/s lightwave transmission system.

  • PDF

Characterization of As-Developed LTCC Material Through The Fabrication of 2-Pole Band Pass Filter (적층형 2-Pole 대역통과 필터 제작을 통한 개발된 LTCC 조성의 특성 평가)

  • 이경호;최병훈;방재철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.134-137
    • /
    • 2002
  • A new LTCC material in the $PbWO_4-TiO_2-B_2O_3-CuO$ system was developed. The developed material can be sintered at $850^{\circ}C$ and its dielectric properties are $\varepsilon_r=20-25, Q\timesf_o=30000~50000GHz$ , and $\tau_f=0.2~30ppm/^{\circ}C$, depending on the components moi ratio. Due to its low sintering temperature and microwave dielectric properties, the developed material can be used as a LTCC substrate for fabrication of multilayered microwave communication module set. In present study, using this material, tape casting condition was established. With this processing condition, a T-resonator was fabricated and its electrical properties were examined. Also, a 2-Pole band pass filter was fabricated and its frequency characteristics were compared with simulation results.

  • PDF

High-Q Resonator with Substrate Integrated Waveguide(SIW) Structure (높은 Q 값을 갖는 기판 집적형 도파관(SIW) 공진기)

  • Yun Tae-Soon;Nam Hee;Lee Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.324-329
    • /
    • 2006
  • In this paper, a resonator with the substrate integrated waveguide(SIW) structure at the satellite communication band is presented. The SIW structure is realized by via-holes on the dielectric substrate and has an advantage of integration with other circuits. For the measurement, a designed back-to-back transition has the insertion loss of 0.4 dB at 18 GHz. Also, the quality factor of the resonator with the SIW structure including back-to-back transition is obtained to be 222. The high-Q resonator with the SIW structure can be used in filter, oscillator, and voltage controlled oscillator.

UWB Bandpass Filter Using Capacitive Coupling with Cross Resonator ("+"자 공진기와 용량성 결합을 이용한 초광대역 대역 통과 여파기)

  • Dong, Thai Hoa;Lee, Jae-Young;Kim, Ihn-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.486-493
    • /
    • 2010
  • This article introduces a novel ultra wideband(UWB) bandpass filter(BPF) with sharp roll-off characteristics in stripline structure. The UWB characteristic is basically obtained from capacitive coupled cross resonator. The resonator has ${\lambda}/2$ length. And at the center of the resonator, two stubs are loaded, one is a ${\lambda}/8$ short-circuited stub and the other is a ${\lambda}/8$ open-circuited stub. The two stubs provide two attenuation poles at lower and upper cutoff frequencies. For input and output lines, two identical capacitively coupled lines have been installed to suppress the unwanted signals in the lower and upper stopbands. The filter has been designed for the U.S. UWB band(3.1~10.6 GHz) with two transmission zeros at 2.4 and 11.1 GHz. The filter has been realized with Low Temperature Core-fired Ceramic(LTCC) green tape which has the dielectric constant of 7.8. Measurement results agree well with HFSS simulation results. Insertion loss less than 0.7 dB and return loss better than 14 dB in the pass band have been measured. The group delay in the center frequency is 0.27 ns and the group delay variation within pass band is less than 0.5 ns. The size of the filter is $6{\times}18{\times}0.6\;mm^3$.

Design and Implementation of a Band Pass Filter of Personal Communication System for information facilities (정보 설비용 통신장치의 대역통과 필터의 설계 및 구현)

  • 이헌용;김영달;윤중락;강명식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.3
    • /
    • pp.47-54
    • /
    • 1996
  • In this paper, the band pass filter was designed and constructed for personal communication services of information facilities. For the band pass filter design, after dielectric resonator structures were analyzed. J-inverter design theory and its simulation method were studied. The parameters obtained from design theory were practically applied to filter construction. The simulation results are well agreed with the measured result of constructed filter after fine tunings.

  • PDF

Miniaturization Technology of the Filter for High-speed Wireless Communication Systems (초고속 무선통신 설비용 필터의 소형화에 관한 연구)

  • Hwang, Jae-Ho;Moon, Jun-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.368-371
    • /
    • 2005
  • In this paper, a small band pass filter is designed using new probe type for wireless communication system. In order to provide a band pass filter which can be reduced in dimension, can be reduced in height, and can be surface-mounted. The filter was fabricated using $TE_{01{\delta}}$ mode dielectric resonator. The input/output probes are attached to coner portion of the rectangular metal cavity. Results of the manufactured filter$(12{\times}12{\times}8mm)$ show that the center frequency is 9.953GHz, the insertion loss is -2.98 dB, the 3dB-bandwidth is 15 MHz, and the lode Q is 663.

  • PDF

An Active Tunable Bandpass Filter Design for High Power Application (고출력 특성을 고려한 능동 가변 대역 통과 여파기 설계)

  • Kim, Do-Kwan;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, a high power active tunable bandpass filter made of dielectric resonators and varactor diodes is designed using the active capacitance circuit generating negative resistance for tuning cellular TX, RX band. An active capacitance circuit's series feedback circuit using GaAs HFET whose $P_{1dB}$ is 32 dBm is used for compensating the losses from the varactor diodes of the tunable bandpass filter. The tuning elements, the varactor diodes are used as the back-to-back configuration to achieve the high power performance, The designed active capacitance circuit improves the insertion loss characteristics. The designed 2-stage active tunable dielectric bandpass filter at cellular band can cover from 800 MHz to 900 MHz. The insertion losses at 836 MHz and 881.5 MHz with 25 MHz bandwidth are 0.48 dB and 0.39 dB, respectively. The $P_{1dB}$ of the designed bandpass filter at TX and RX band are measured as 19.5 dBm and 23 dBm, respectively.

An Experimental Study on the Tuning Characteristics of a Re-enterant cavity resonator (Re-enterant 공동 공진기의 주파수 가변 특성에 관한 실험적 고찰)

  • 김진구;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.2
    • /
    • pp.133-138
    • /
    • 1987
  • In this paper the tuning characteristics of resonant frequencies are experimentally studied through the variation of the length of the inner conducting rod in a re-enterant eavity resonator. The re-enterant eavity resonator consists of a coaxial cable and a cylindrical wave guide. The length of the inner conducting rod can be varied to the longitudinal direction. The resonant frequencies of TMonq modes are measured according to the arbitrary length. In order to verify the propriety of experimental results, experimental results are compared with other theoretical results. The results in this paper can be applied to wave meter and resonant circuit of amplifier. They will be use to vary resonant frequencies of a dielectric resonator in MIC and filter.

  • PDF

Design of the T-SRR and Low Loss Band-pass Filter Using MNG Metamaterial (MNG 메타 인공 물질을 이용한 T-SRR 및 저손실 대역통과 필터의 설계)

  • Yoon, Ki-Cheol;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2512-2520
    • /
    • 2013
  • In this paper, the T-SRR (Triple Split Ring Resonator) using MNG (mu-Negative) meta-material adapted in a low-loss bandpass filter with 3-stages is suggested. The size of the T-SRR in the proposed bandpass filter with low dielectric constant PCB can be easily controlled. And the ${\lambda}/4$ transmission line theory is applied. The proposed T-SRR and filter have the center frequency of 10 GHz with QL value of 184 for military-satellite communication system in I band. The experimental results of the filter show that the insertion and return losses are 1.44 dB and 17.3 dB with bandwidth of 10 %, respectively. The proposed filter will be redesigned by IPD material etc. should be placed here. These instructions give you guidelines for preparing papers for JICCE.