• Title/Summary/Keyword: dielectric properties

Search Result 3,396, Processing Time 0.024 seconds

Dielectric Properties of the $BaTiO_3/SrTiO_3$ mutilayered thick tilms by Screen-Printing Method (스크린 프린팅법을 이용한 $BaTiO_3/SrTiO_3$ 이종층 후막의 유전특성)

  • Kwon, Hyun-Yul;Lee, Sang-Chul;Kim, Ji-Heon;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.400-403
    • /
    • 2004
  • The dielectric properties of $BaTiO_3/SrTiO_3$ multilayered thick films with printing times were investigated. $BaTiO_3/SrTiO_3$ thick films were deposited by Screen-printing method on alumina substrates. The obtained films were sintered at $1400^{\circ}C$ with bottom electrode(Pt) for 2hours. The structural and the dielectric properties were investigated for various printing times. The BST phase appeared in all of the $BaTiO_3/SrTiO_3$ mutilayered thick films. The $BaTiO_3/SrTiO_3$ multilayered thick film thickness, obtained by one printings, was $50{\mu}m$. The dielectric constant and dielectric loss of the $BaTiO_3/SrTiO_3$ multilayered thick film, obtained by five printings, were about 266, 0.8% at 1Mhz, respectively.

  • PDF

Dielectric Properties depending on Frequency in Organic Light-emitting Diodes using $Alq_3$ (Alq3를 이용한 유기 발광 소자의 주파수에 변화에 따른 유전 특성)

  • Oh, Y.C.;Lee, D.K.;Chung, D.H.;Lee, H.S.;Park, G.H.;Kim, T.W.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.293-294
    • /
    • 2005
  • We have investigated dielectric properties depending on frequency in organic light -emitting diodes using 8-hydroxyquinoline aluminum ($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using impedance of characteristics. impedance characteristics was measured complex impedance Z and phase $\Theta$ in the frequency range of 40 Hz to $10^8$ Hz. We obtained complex electrical conductivity, dielectric constant, and loss tangent (tan$\delta$) of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

  • PDF

A Study on the Dielectric Properties of the $Pb(Mb_{1/3}Nb_{2/3})O_3$-$BaTiO<_3$-$CaZrO<_3$Ceramics ($Pb(Mb_{1/3}Nb_{2/3})O_3$-$BaTiO<_3$-$CaZrO<_3$세라믹의 유전특성에 관한 연구)

  • 김수하;배선기
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1041-1047
    • /
    • 1997
  • In this paper the dielectric properties of (0.8-x)Pb(Mb$_{1}$3//Nb/2/3)O$_3$/BaTiO$_3$-CaZrO$_3$(x=0.1, 0.15, 0.2, 0.25) ceramics were investigated. Specimens were prepared by the conventional mixed oxide method and sintering temperature and time were 1000~115$0^{\circ}C$ 2hr, respectively. The structural and dielectric properties with variation of sintering temperature and composition were investigated. All the specimens sintered at 115$0^{\circ}C$ for 2hr showed the highest value of 1043. With increasing the contents of CZ and frequency dielectric constant was decreased and which was decreased with increasing temperature from 3$0^{\circ}C$ to 15$0^{\circ}C$.

  • PDF

Ferroelectric properties of Sm-doped PZT thin films (Sm 첨가에 따른 PZT 박막의 유전 특성)

  • Son, Young-Hoon;Kim, Kyoung-Tae;Kim, Chang-Il;Lee, Byoung-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.190-193
    • /
    • 2003
  • Sm-doped lead zirconate titanate($Pb_{1.1}(Zr_{0.6}Ti_{0.4})O_3$; PZT) thin films on the Pt(111)/Ti/$SiO_2$/Si(100) substrates prepared by a sol-gel method. The effect on structural and electrical properties of PZT thin films measured according to the Sm content. Sm-doping altered significantly dielectric and ferroelectric properties. The remanent polarization and the coercive field decreased with the increasing Sm content. The dielectric constant and the dielectric loss of PZT thin films decreased with the increasing Sm content. At 100 kHz, the dielectric constant and the dielectric loss of. the 0.3 mol% of Sm-doped PZT thin film were 1200 and 0.12 respectively. The remanent polarization (2Pr) of the 0.3 mol% of Sm-doped PZT thin film was $52.13{\mu}C/cm^2$ and the coercive field was 94.01 kV/cm. The 0.3 mol% of Sm-doped PZT thin film showed an improved fatigue characteristic comparing to the undoped PZT thin film.

  • PDF

Dielectric Properties Depending on Temperature in Organic Light-emitting Diodes(ITO/$AIq_3$/AI) (유기 발광 다이오드(ITO/$AIq_3$/AI)의 온도 변화에 따른 유전 특성)

  • Oh, Y.C.;Lee, D.K.;Cho, C.N.;Ahn, J.H.;Jeong, Dong-Hui;Lee, S.I.;Kim, G.Y.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.74-75
    • /
    • 2006
  • We have investigated dielectric properties depending on temperature in organic light-emitting diodes using 8-hydroxyquinoline aluminum ($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using characteristics of impedance. he Impedance characteristics was measured complex impedance Z and phase $\theta$ in the temperature range of 10 K to 300 K. We obtained complex electrical conductivity, dielectric constant and loss tangent ($tan{\delta}$) of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

  • PDF

Improved Densification and Microwave Dielectric Properties of BaO·Nd2O3·5TiO2 Modified with an Iso-Component Borate Glass

  • Shin, Dong-Joo;Lee, Hyung-Sub;Cho, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • [ $BaO{\cdot}Nd_2O_3{\cdot}5TiO_2$ ] (BNT) ceramics modified with a borate glass containing Ba, Nd and Ti as glass constituents were investigated with regard to their sintering behavior and microwave dielectric properties. An addition of iso-component glass significantly improved the sinterabilty of the BNT ceramics and lowered the sintering temperature. A maximum density of $5.29\;g/cm^3$ and an x-y shrinkage of 17% were obtained for BNT ceramics containing 10wt.% of the glass sintered at $1100^{\circ}C$. The dielectric composition without the glass additive was only slightly densified at $1100^{\circ}C$. The resulting sample exhibited two crystalline phases, $BaNd_2Ti_5O_{14}$ and $Ba_2Ti_9O_{20}$, regardless of sintering temperature and glass content. When >10wt.% glass was added, exaggerated grain growth with a less uniform microstructure was found, resulting in the subsequent reduction of the fired density and the dielectric properties. BNT ceramics containing 10wt.% of the isocomponent glass sintered at $1100^{\circ}C$ for 4 h showed promising dielectric properties of k = 71.3 and Q = 1,330.

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • Lee, Kyoung-Ho;Kim, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • 이경호;김용철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

Study on the electrical and mechanical properties of insulating paper (절연지의 기계적 및 전기적 물성에 대한 연구)

  • 엄승욱;김귀열
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.413-417
    • /
    • 1995
  • In order to elucidate the electrical and mechanical properties of insulating paper, it is desirable to study the performances of tensile strength, dielectric constant, dielectric strength. In this work, we constructed the characteristics depending on change of fabrication condition, and these specimens were manufactured by hot press method. As a result, tensile strength was about 75MPa and breakdown was above 5 kV/mm at the minimum value.

  • PDF

Synthesis and Microwave Dielectric Properties of $La(Zn_{1/2}Ti_{1/2})O_3$ ($La(Zn_{1/2}Ti_{1/2})O_3$의 합성 및 고주파 유전특성)

  • 서명기;조서용;홍국선;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1019-1023
    • /
    • 1996
  • The dielectric properties at microwave frequencies of B site complex perovskite La(Zn1/2Ti1/2)O3 which has +3 ion in A site were investigated. maximum Q*F value of the specimens was 59000 dielectric constant 34, temperature coefficient of resonant frequency -52 ppm/$^{\circ}C$. XRD pattern of the sintered specimen shows (111) ssuperlattice reflection which indicates Zn and Ti cation ordering.

  • PDF