• Title/Summary/Keyword: die geometry

Search Result 182, Processing Time 0.022 seconds

Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk (초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가)

  • Cha, D.J.;Kim, D.K.;Kim, Y.D.;Bae, W.B.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF

A Study on Improvement of Extrudability for Extrusion Process of Heat Sink (방열판 직접압출공정의 성형성 향상에 관한 연구)

  • 이정민;김병민;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.422-428
    • /
    • 2004
  • At present, the design of extrusion dies and operation in extrusion companies are primarily based on trial and error. The experience of the die designer, the press operator and the die corrector determine the performance of the extrusion die and the efficiency of the process. In order to produce defect-free products of desirable quality in terms of strength, surface quality and geometrical dimensions, it is important to obtain more knowledge of the processes that occur during extrusion. Recently, to reduce the costs of designing and manufacturing of extrusion dies, and to ensure the quality of the extruded products, numerical simulation for extrusion processes such as FEM (finite element method) is applied increasingly and becomes a very important tool for the design and development of new products. However, most of the studies about FE simulation have been accomplished for simple geometry and low extrusion ratio in the filed of steady metal flow conditions. The extruded products of AI alloy in industrial practice involve complicated sectional geometry. This study was designed to reduce the time of die design and manufacturing in the extrusion process using FEM simulation. FEM simulations of extrusion process were performed in non-steady states conditions by changing weld plate included in extrusion die set. Product which was employed in this study is heat sink that has been used in the parts of heat exchanger of electric circuits. It is generally applied for aluminum or its alloys due to heat efficiency and easy production of complicated shapes, and manufactured by extrusion process. The simulated results showed that weld plate shape in extrusion dies influences meta] flow and dimensional accuracy of products.

Optimization of injection molding to minimize sink marks for cylindrical geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Yun-Suk;Je, Duck-Keun;Jeong, Young-Deug
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

  • PDF

A study on the extrusion forming characteristics of construction materials with die and process parameters (금형 및 공정변수에 따른 층상복합재료의 압출성형 특성에 관한 연구)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. The main design parameters influencing on deformation pattern are diameter ratio of the composite components and semi-die angle. Efforts are focused on the deformation patterns, velocity gradient, predicted forming load and the end distance through the various simulations. Simulation results indicate that there is an obvious difference of forming pattern with various diameter ratio and semi-die angle. The analysis in this paper is concentrated on the evaluation of the design parameters on the deformation pattern of composite rod.

  • PDF

Flow Analysis of Profile Extrusion by a Modified Cross-sectional Numerical Method

  • Seo, Dongjin;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.103-110
    • /
    • 2000
  • Flow analysis of profile extrusion is essential for design and production of a profile extrusion die. Velocity, pressure, and temperature distribution in an extrusion die are predicted and compared with the experimental results. A two dimensional numerical method is proposed for three dimensional analysis of the flow field within the profile extrusion die by applying a modified cross-sectional numerical method. Since the cross-sectional shape of the die is varied gradually, it is assumed that the pressure is constant within a cross-sectional plane that is perpendicular to the flow direction. With this assumption, the velocity component in the cross-sectional direction is neglected. The exact cross-sectional shape at any position is calculated based on the geometry of standard cross-sections. The momentum and energy equations are solved with proper boundary conditions at a cross-section and then the same calculation is carried out for the next cross-section using the current calculated values. An L-shaped profile extrusion die is produced and employed for experimental investigation using a commercially available polypropylene. Numerical prediction for the varying cross-sectional shape provides better results than the previous studies and is in good agreement with the experimental results.

  • PDF

Development of an Automatic Design System of Progressive Die for making CPT grid (칼라화상관 전극 프로그레시브금형의 자동설계시스템개발)

  • 한규택
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.14-20
    • /
    • 1998
  • This paper describes a computer-aided die design system of progressive die for making CPT grid. An approach to the development of the automatic design system is based on knowledge-based rules. The developed system is designed by considering several factors, such as grid geometry and punch profile. Grid, a key component of electronic gun, is formed through a sequence of many operations, among which the pilot piercing, beading, notching, bending, swaging and slotting etc. Using the developed system, design parameters are determined and output is generated in graphic forms. Therefore the developed system provides part drawing and the assembly drawing of die set.

Design Analysis and Field Try-out of Automotive Panel Dies (자동차 패널금형의 설계해석과 현장 트라이아웃)

  • 이종문;금영탁
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.127-134
    • /
    • 1999
  • This study suggests the practical method which can reduce the lead time of the field trial and design of the dies. The virtual manufacturing, with which the die design is evaluated by computer analysis, reveals the impropriety of a design before die makings. Three methods for reducing the die making process occupying over 60% of the automotive development are like follows: First, the crack and wrinkle occurrence can be prevented by virtually adjusting the blank holding force and drawbead force with a computer simulation. Second, the parts which can not remove the forming defects in spite of the adjustment of forming parameters need to modify the part geometry or punch temporary shape. Third, the simulation before field trial, and field trial simulation can be effectively used in die design.

  • PDF

3-Dimensional Finite Element Method Analysis of Blanking Die for Lead Frame (리드프레임의 전단용 금형에 대한 3차원 FEM 해석)

  • Choi, Man-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.61-65
    • /
    • 2011
  • The capabilities of finite elements codes allow now accurate simulations of blanking processes when appropriate materials modelling are used. Over the last decade, numerous numerical studies have focused on the influence of process parameters such as punch-die clearance, tools geometry and friction on blanking force and blank profile. In this study, three dimensional finite element analysis is carried out to design a lead frame blanking die using LS-Dyna3D package. After design of the blanking die, an experiment is also carried out to investigate the characteristics of blanking for nickel alloy Alloy42, a kind of IC lead frame material. In this paper, it has been researched the investigation to examine the influence of process parameters such as clearance and air cylinder pressure on the accuracy of sheared plane. Through the experiment results, it is shown that the quality of sheared plane is less affected by clearance and air cylinder pressure.

An automated process planning 8 die design using expert system for blanking or piercing of irregular shaped sheet metal products (불규칙성 박판제품의 프로그래시브 다이설계를 위한 자동화된 CAD시스템)

  • Kim, J. H.;Kim, C.;Choi, J. C.;Kim, B. M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.214-218
    • /
    • 1995
  • Much labor, an exceedingly long lead time, and the skills of experienced engineers are required for press tool design. To reduce such problems, several CAD systems for blanking or piercing have been developed. This paper describes a computer-aided design for blanking or piercing of irregularly shaped sheet metal products. An approach to the system is based on knowledge base rules. The process planning & die design system is designed by considering several factors, such as complexity of blank geometry, punch profile, and availability of press equipment and standard parts. Therefore, after checking a production feasibility for irregular shaped sheet metal products, this system which is implemented strip layout module can carry out a process planning and generate the strip layout in graphic forms. Also this system implemented die layout module can carry out a die design for each process which is obtained form the result of an automated process planning and generate parts and assembly drawing of a die set.

  • PDF