• Title/Summary/Keyword: dicyclic groups

Search Result 3, Processing Time 0.017 seconds

A CLASSIFICATION OF PRIME-VALENT REGULAR CAYLEY MAPS ON ABELIAN, DIHEDRAL AND DICYCLIC GROUPS

  • Kim, Dong-Seok;Kwon, Young-Soo;Lee, Jae-Un
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • A Cayley map is a 2-cell embedding of a Cayley graph into an orientable surface with the same local orientation induced by a cyclic permutation of generators at each vertex. In this paper, we provide classifications of prime-valent regular Cayley maps on abelian groups, dihedral groups and dicyclic groups. Consequently, we show that all prime-valent regular Cayley maps on dihedral groups are balanced and all prime-valent regular Cayley maps on abelian groups are either balanced or anti-balanced. Furthermore, we prove that there is no prime-valent regular Cayley map on any dicyclic group.

ON MINIMAL PRODUCT-ONE SEQUENCES OF MAXIMAL LENGTH OVER DIHEDRAL AND DICYCLIC GROUPS

  • Oh, Jun Seok;Zhong, Qinghai
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.83-116
    • /
    • 2020
  • Let G be a finite group. By a sequence over G, we mean a finite unordered sequence of terms from G, where repetition is allowed, and we say that it is a product-one sequence if its terms can be ordered such that their product equals the identity element of G. The large Davenport constant D(G) is the maximal length of a minimal product-one sequence, that is, a product-one sequence which cannot be factored into two non-trivial product-one subsequences. We provide explicit characterizations of all minimal product-one sequences of length D(G) over dihedral and dicyclic groups. Based on these characterizations we study the unions of sets of lengths of the monoid of product-one sequences over these groups.

EXAMPLES OF SIMPLY REDUCIBLE GROUPS

  • Luan, Yongzhi
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1187-1237
    • /
    • 2020
  • Simply reducible groups are important in physics and chemistry, which contain some of the important groups in condensed matter physics and crystal symmetry. By studying the group structures and irreducible representations, we find some new examples of simply reducible groups, namely, dihedral groups, some point groups, some dicyclic groups, generalized quaternion groups, Heisenberg groups over prime field of characteristic 2, some Clifford groups, and some Coxeter groups. We give the precise decompositions of product of irreducible characters of dihedral groups, Heisenberg groups, and some Coxeter groups, giving the Clebsch-Gordan coefficients for these groups. To verify some of our results, we use the computer algebra systems GAP and SAGE to construct and get the character tables of some examples.