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ON MINIMAL PRODUCT-ONE SEQUENCES OF MAXIMAL
LENGTH OVER DIHEDRAL AND DICYCLIC GROUPS

JUN SEOK OH AND QINGHAI ZHONG

ABSTRACT. Let G be a finite group. By a sequence over G, we mean a fi-
nite unordered sequence of terms from G, where repetition is allowed, and
we say that it is a product-one sequence if its terms can be ordered such
that their product equals the identity element of G. The large Davenport
constant D(G) is the maximal length of a minimal product-one sequence,
that is, a product-one sequence which cannot be factored into two non-
trivial product-one subsequences. We provide explicit characterizations
of all minimal product-one sequences of length D(G) over dihedral and
dicyclic groups. Based on these characterizations we study the unions of
sets of lengths of the monoid of product-one sequences over these groups.

1. Introduction

Let G be a finite group. A sequence S over G means a finite sequence of
terms from G which is unordered, repetition of terms allowed. We say that
S is a product-one sequence if its terms can be ordered so that their product
equals the identity element of the group. The small Davenport constant d(Q)
is the maximal integer ¢ such that there is a sequence of length ¢ which has
no non-trivial product-one subsequence. The large Davenport constant D(G)
is the maximal length of a minimal product-one sequence (this is a product-
one sequence which cannot be factored into two non-trivial product-one sub-
sequences). We have 1+ d(G) < D(G) and equality holds if G is abelian. The
study of the Davenport constant of finite abelian groups has been a central
topic in zero-sum theory since the 1960s (see [13] for a survey). Both the direct
problem, asking for the precise value of the Davenport constant in terms of
the group invariants, as well as the associated inverse problem, asking for the
structure of extremal sequences, have received wide attention in the literature.
We refer to [4,14,15,21-23,29,30] for progress with respect to the direct and
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to the inverse problem. Much of this research was stimulated by and applied
to factorization theory and we refer to [16, 18] for more information on this
interplay.

Applications to invariant theory (in particular, the relationship of the small
and large Davenport constants with the Noether number, see [5-9,26]) pushed
forward the study of the Davenport constants for finite non-abelian groups.
Geroldinger and Grynkiewicz ([17,24]) studied the small and the large Daven-
port constant of non-abelian groups and derived their precise values for groups
having a cyclic index 2 subgroup. Brochero Martinez and Ribas ([2, 3]) de-
termined, among others, the structure of product-one free sequences of length
d(G) over dihedral and dicyclic groups.

In this paper we establish a characterization of the structure of minimal
product-one sequences of length D(G) over dihedral and dicyclic groups (The-
orems 4.1, 4.2, and 4.3). It turns out that this problem is quite different
from the study of product-one free sequence done by Brochero Martinez and
Ribas. The minimal product-one sequences over G are the atoms (irreducible
elements) of the monoid B(G) of all product-one sequences over G. Algebraic
and arithmetic properties of B(G) were recently studied in [27,28]. Based on
our characterization results of minimal product-one sequences of length D(G)
we give a description of all unions of sets of lengths of B(G) (Theorems 5.4 and
5.5).

We proceed as follows. In Section 2, we fix our notation and gather the
required tools. In Section 3, we study the structure of minimal product-one se-
quences fulfilling certain requirements on their length and their support (Propo-
sitions 3.2 and 3.3). Based on these preparatory results, we establish an explicit
characterization of all minimal product-one sequences having length D(G) for
dihedral groups (Theorems 4.1 and 4.2) and for dicyclic groups (Theorem 4.3).
Our results on unions of sets of lengths are given in Section 5.

2. Preliminaries

We denote by N the set of positive integers and we set Ng = N U {0}. For
each k € N, we also denote by N> the set of positive integers greater than or

equal to k. For integers a,b € Z, [a,b] = {z € Z | a < x < b} is the discrete
interval.

Groups. Let G be a multiplicatively written finite group with identity element

lg. For an element g € G, we denote by ord(g) € N the order of g, and for
subsets A, B C G, we set

AB = {abla€ A and be B} and g¢gA = {ga|a€ A}.
If Gyp C G is a non-empty subset, then we denote by (Gy) C G the subgroup
generated by Go, and by H(Go) = {g € G|9Go = Gy} the left stabilizer of

Go. Then H(Gp) C G is a subgroup, and Gy is a union of right H(Gg)-cosets.
Of course, if G is abelian, then we do not need to differentiate between left
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and right stabilizers and simply speak of the stabilizer of Gy, and when G is
written additively, we have that H(Go) = {g € G| g+ Go = Go}. Furthermore,
for every n € N and for a subgroup H C G, we denote by

e [G: H] the indez of H in G,

e ¢y : G — G/H the canonical epimorphism if H C G is normal,
e (, an (additively written) cyclic group of order n,

e Do, a dihedral group of order 2n, and by

® (4, a dicyclic group of order 4n.

Sequences over groups. Let G be a finite group with identity element 1
and Go C G a subset. The elements of the free abelian monoid F(Gy) will
be called sequences over Gy. This terminology goes back to Combinatorial
Number Theory. Indeed, a sequence over Gy can be viewed as a finite unordered
sequence of terms from G, where the repetition of elements is allowed. We
briefly discuss our notation which follows the monograph [25, Chapter 10.1].
In order to avoid confusion between multiplication in G and multiplication in
F(Gyp), we denote multiplication in F(Gg) by the boldsymbol - and we use
brackets for all exponentiation in F(Gp). In particular, a sequence S € F(Gy)
has the form

(2.1) S =gi+...-q0 = Hie[1 9 € F(Go),

where g1, ...,9¢ € Gg are the terms of S. For g € Gy,

o v,(S)=1|{i € [1,€]| g; = g}| denotes the multiplicity of g in S,

e supp(S) = {g € Go|vy(S) > 0} denotes the support of S, and

o h(S) =max{v,(S)|g € Go} denotes the mazimal multiplicity of S.
A subsequence T of S is a divisor of S in F(Gy) and we write T'|.S. For a
subset H C G, we denote by Sy the subsequence of S consisting of all terms
from H. Furthermore, T'| S if and only if vo(T") < v4(S) for all g € Gy, and
in such case, S - T denotes the subsequence of S obtained by removing the
terms of T from S so that v, (S« T1=Y) = v, (S) —vy(T) for all g € Go. On the
other hand, we set S~—! = 91_1 S gé_1 to be the sequence obtained by taking
elementwise inverse from S.

Moreover, if S1,S2 € F(Gp) and g1,92 € Gy, then Sy - Sy € F(Gp) has
length |S1]| 4 [S2|, S1-91 € F(Gp) has length |S1|+1, g192 € G is an element
of G, but g1 - g2 € F(Gyp) is a sequence of length 2. If g € Gy, T € F(Gy), and
k € Ng, then

g =g... . geF(Gy) and TH =T. . .T e F(G).
k k

Let S € F(Gp) be a sequence as in (2.1). When G is written multiplicatively,
we denote by

7(S) = {9-q) - 9@y € G | T a permutation of [1,/]} C G
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the set of products of S, and it can easily be seen that 7(S) is contained in a
G’-coset, where G’ is the commutator subgroup of G. Note that |S| = 0 if and
only if S = 1x(g), and in that case we use the convention that 7(S) = {1}
When G is written additively with commutative operation, we likewise define

oS)=gi+-+ag €G

to be the sum of S. More generally, for any n € Ny, the n-sums and n-products
of S are respectively denoted by

Sn(S) = {o(T) | T|S and |T|=n} ¢ G and I,(S) = |J =(T) c G,
T|S
|T|=n
and the subsequence sums and subsequence products of S are respectively de-
noted by

2(8) = [JEu(S) € G and T(S) = |JI.(S) C G.

n>1 n>1
The sequence S is called

e a product-one sequence if 1 € 7(S),
o product-one free if 1¢ ¢ II(.S),
o square-free if h(S) < 1.

IfS=g¢g1-...-g¢ € B(G) is a product-one sequence with 1 = g1 - - - g¢, then
la = gi - geg1 -~ gi—1 for every ¢ € [1,4]. Every map of groups 6 : G — H
extends to a monoid homomorphism 0 : F(G) — F(H), where 0(S) = 6(g1) *

.+ 0(ge). If 0 is a group homomorphism, then 6(S) is a product-one sequence
if and only if 7(S) Nker(#) # (). We denote by

B(Go) = {S € F(Go)|1g € n(5)}

the set of all product-one sequences over Go, and clearly B(Gg) C F(Gp) is
a submonoid. We denote by A(Gy) the set of irreducible elements of B(Gy)
which, in other words, is the set of minimal product-one sequences over Gy.
Moreover,
D(Go) = sup {|S||S € A(Go)} € NU {0}
is the large Davenport constant of Gy, and
d(Go) = sup {|S||S € F(Go) is product-one free} € Ny U {oc}

is the small Davenport constant of Goy. It is well known that d(G) + 1 <
D(G) < |G|, with equality in the first bound when G is abelian, and equality in
the second bound when G is cyclic ([17, Lemma 2.4]). Moreover, Geroldinger
and Grynkiewicz provide the precise value of the Davenport constants for non-
cyclic groups having a cyclic index 2 subgroups (see [17,24]), whence we have
that, for every n € Nx>o,

2n if n > 3 is odd,

D(Q4n) = 3n and D(DQn) = { 3?n if n Z 4 is even.
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Ordered sequences over groups. These are an important tool used to
study (unordered) sequences over non-abelian groups. Indeed, it is quite useful
to have related notation for sequences in which the order of terms matters.
Thus, for a subset Go C G, we denote by F*(Go) = (F*(Gy),+) the free
(non-abelian) monoid with basis Go, whose elements will be called the ordered
sequences over Gy.

Taking an ordered sequence in F*(Gy) and considering all possible permu-
tations of its terms gives rise to a natural equivalence class in F*(Gy), yielding
a natural map

L[]+ F*(Go) —  F(Go)

given by abelianizing the sequence product in F*(Gy). For any sequence S €
F(Go), we say that an ordered sequence S* € F*(Gy) with [S*] = S is an
ordering of the sequence S € F(Gy).

All notation and conventions for sequences extend naturally to ordered se-
quences. We sometimes associate an (unordered) sequence S with a fixed (or-
dered) sequence having the same terms, also denoted by S. While somewhat
informal, this does not give rise to confusion, and will improve the readability
of some of the arguments.

For an ordered sequence S = g;+...-g; € F*(G), we denote by 7* : F*(G) —
G the unique homomorphism that maps an ordered sequence onto its product
in G, so

T(S) =g1-g90 €G.

If G is a multiplicatively written abelian group, then for every sequence S €
F(G), we always use 7*(S) € G to be the unique product, and II(S) =
U{#*(T)|T divides S and |T|>1} C G.

For the proof of our main results, the structure of product-one free sequences
over cyclic groups plays a crucial role. Thus we gather some necessary lemmas
regarding sequences over cyclic groups. Let G be an additively written finite
cyclic group. A sequence S € F(G) is called smooth (more precisely, g-smooth)
it §$ = (nig)-...- (neg), where |S| = ¢ € N, g e G, 1 =mn; < --- < ny,
m=ny +---+ng <ord(g), and X(S) = {g,2g,...,mg}.

Lemma 2.1 ([16, Lemma 5.1.4]). Let G be an additively written cyclic group
of order |G| =n >3, g € G, and k,l,ny,...,n; € N such that | > % and
m=n1+---+n <k<ord(g). If1<n; <---<n;and S = (n1g)-...-(nyg),
then > (S) = {g, 2g, ... ,mg}, and S is g-smooth.

Lemma 2.2. Let G be an additively written cyclic group of order |G| =n >3
and S € F(G) a product-one free sequence of length |S| > "T'H Then S is
g-smooth for some g € G with ord(g) = n, and for every h € > (S), there
exists a subsequence T'| S such that o(T) = h and g|T. In particular,

L 1S = n—1, then § = gin-1.
2. if |S| =n—2, then S = (2g) - g[nfg] or § — g["72],
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3. if n > 4, then, for every subsequence W | S with |W| > % —1, we obtain
that g | W.

Proof. The first statement, that S is g-smooth for some g € G with ord(g) = n,
was found independently by Savchev—Chen and by Yuan, and we cite it in the
formulation of [16, Theorem 5.1.8.1].

Suppose now that S = (n1g) - ...+ (ngg) with 1 = ny < --- < ny. Then
no+--+4+ng<n—1land f—1> %’1 Applying Lemma 2.1 (with k =n —1),
we obtain that S - gl=1 is still g-smooth. Let h € 3(S) = {9.29,..., (m +
cee ng)g}. If h = g, then we take T = g. If h # g, then since S - gl~1l
is g-smooth, it follows that h + (—g) € > (S - g[_l]), and hence there exists
WS- gl=" such that (W) = h+(—g). Thus W -g is a subsequence of S with
o(W.g)=h.

1. and 2. This follows immediately from the main statement.

3. Let n > 4, and W | S be a subsequence with |W| > % — 1. Then there
exists a subset I C [1,/] with [I| > % — 1 such that W = []}.;(n:g). Assume
to the contrary that n; > 2 for all ¢ € I. Then

4

1

-1 > L= ; o> — = > n——

nel 2y om =3 nik > ny 2 2AWIH(ISI= W) = IS[HW] 2 05
j=1 iel JE[LO\I

a contradiction. O

3. On special sequences

In this section, we study the structure of minimal product-one sequences
under certain additional conditions (Propositions 3.2 and 3.3). These results
will be used substantially in the proofs of our main results in next section. We
need the Theorem of DeVos-Goddyn—Mohar (see Theorem 13.1 of [25] and the
proceeding special cases).

Lemma 3.1. Let G be a finite abelian group, S € F(G) a sequence, n € [1,]95]],
and H=H(Y,(5)). Then

Zn(S) = | Y min{n,vy(¢u(S))} —n+1][H|.
geG/H

Let G be an additively (resp. multiplicatively) written finite abelian group.
Then 2G = {2g|g € G} (resp. G* = {¢*| g € G}). Likewise, given a sequence
S=g1-...- g0 € F(G), we set

(31) 28 =2g;-...-2g0 € F(2G) (resp. S* = g7 -...-g; € F(G?)).

The Erdés-Ginzburg-Ziv constant s(G) is the smallest integer ¢ € N such that
every sequence S € F(G) of length |S| > ¢ has a subsequence T € B(G)
of length |T| = exp(G). If G = C,, & Cy, with 1 < nq|ng, then s(G) =
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2n1 4 2ng — 3 ([18, Theorem 5.8.3]). Results on groups of higher rank can be
found in [10].

Proposition 3.2. Let G = (a,7|a” = 72 = 1g and Ta = a~17) be a

dihedral group, where n € N>y is even. Let S € F(G) be a minimal product-
one sequence such that |S| > n and supp(S) C G\ («). Then S is a sequence
of length |S| = n having the following form:

(a) If n =4, then

S=r-ar-?r-a’r  or S = ("1 a¥r.a¥t?r,

where x,y € [0,3] with x =y + 1 (mod 2).
(b) If n > 6, then

S = (aw'r)[v] . (O[%+$7-) L], (Oly’]')[w] . (a%‘“/,r)[%*w] ’

where x,y € [0,n— 1] such that 2z # 2y (mod n) and ged(z—y, 5) =1,
and v,w € [0, 5] such that * —y =v —w (mod 2).
In particular, there are no minimal product-one sequences S over G such that

S =S1-8; for some S1 € F({)) and S2 € F(G\ (a)) of length |Sa| > n+2.

Proof. For every x € Z, we set T =« +nZ € Z/nZ. Let S = H;E[L\S\] a®iT e
A(G) be of length |S| > n with o®'7---a”5IT7 = 1g, where z1,..., 235 €
[0,n —1]. Since S € A(G), it follows that |S]| is even, and after renumbering if
necessary, we set

W =o1-...-Zg) = W1 -Wa € F(Z/nZ),

where W, = H;e[l,\SW] Tyim1and Wy =[],
o(Ws). If we shift the sequence W by 7 for some y € Z, then the corresponding
sequence S’ = H;e[1,|S|] a® Y7 is still a minimal product-one sequence. If S’
has the asserted structure, then the same is true for S whence we may shift the
sequence W whenever this is convenient. For every subsequence U =91 +... 7,

of W, we denote by ¢(U) = a¥'7 - ... a¥ 7 the corresponding subsequence of
S.

Al. Let U = Uy - Us be a subsequence of W such that |Uy| = |Uz| and o(Uy) =
o(Uz). Then ¢(U) is a product-one sequence.

(1,15|/2) T2i- Thus we have o(W1) =

Proof of A1. Suppose that Uy =91+ ... Yy, and Uz = Z1 - ...+ Z|p,|- Since
o(Uy) = o(Us), it follows that

AV AP T oYU AU = Wit ety )= (Gt e ) = 1o,

whence ¢(U) is a product-one sequence. O
If supp(W7) Nsupp(W2) # 0, say T1 = Tz, then since o(W;) = o(Ws), it

follows by A1 that 1(Z7 - T3) and (W - (z7 - T3)["Y) are both product-one
sequences, a contradiction. Therefore supp(W1) N supp(Ws) = 0.

CASE 1. h(W)=1.
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Since |W| > n = |Z/nZ|, it follows that |W| = n, and hence supp(W) =
Z/nZ. Since o(W1) = o(Ws), it follows that
n(n—1)

n
2wy +as+ o+ xy5-1) = —5 (mod n), whence 2|5(n71).

Since n is even, we have ged(2,n — 1) = 1, which implies that T is even. Note
that, for any distinct two elements x;,,z;, € [1, 5] with 25, = z;, + & and
r;, = x4 + 5, the sequence H;e[m] o”ikT is a product-one sequence. Since
supp(W) = Z/nZ, we have that S is a product of % product-one sequences of

length 4. Since S € A(G), we must have that n = 4 and W is a sequence over
Z/AZ with h(W) = 1, whence (W) is the desired sequence for (a).

CASE 2. h(W) > 2.

Then there exists ¢ € [1,|W]], say ¢ = 1, such that vz(1W) > 2. In view
of supp(W1) Nsupp(W2) = 0, we may assume without loss of generality that
71 = T3. Let

W W

W/:(W1‘<T1‘T3)[_1])'W2 and EZT:T_l

If Y°,2W') = 2(Z/nZ), it follows by o(W') = 20(Ws) — 277 € 2(Z/nZ)
that there exists a subsequence T'| W' of length |T| = ¢ such that 20(T) =
o(W'). Hence we infer that o(T) = o(W’' - T=1) and |T| = (W’ . T[Z1).
Thus A1 implies that (Z7 - T3) and (W’) are both product-one sequences, a
contradiction. Therefore ) ,(2W') C 2(Z/nZ).

Let H = H(}_,(2W’)). By Lemma 3.1, we obtain that

|Se(2W)| > > min{l,v,(¢n(@W))} — £+ 1| |H]|.
9€(2(Z/nZ))/H
If h(¢(2W')) < £, then
[Se@W] = (120~ e+ )] 2§ = [2Z/n2)].

a contradiction. If there exist distinct g1,92 € (2(Z/nZ))/H such that £ <
Vg, (0 (2W")) for all k € [1,2], then

[Se@W)] = 20—+ DIH| = 5 = [22/n2),

a contradiction. Thus there exists only one element, say g € (2(Z/nZ))/H,
such that vy (¢ (2W’)) > ¢, which implies that

X 2W))]
H|

> W +2-

Ve (o (2W')) > 2W'|+1 — o]

7

A2. If H is trivial, then |W| =n and 2Wo = (273)13] with voz(2W;) = 0.



MINIMAL PRODUCT-ONE SEQUENCES OF MAXIMAL LENGTH 91

Proof of A2. Suppose that H is trivial. Then there exists g € 2(Z/nZ) such
that v,(2W') > [W'| +2 -5 > £+ 1, and then we set g = 27 for some
BS Z. If max {V2§(2W1),V2§(2W2)} <1, then £+ 1 < V2§(2W’) < V2§(2W1) +
voy(2W3) < 2, and thus ¢ < 1. Since £ > 1, we obtain that £ = 1, and
it follows by ¢ = @ — 1 that |W| = n = 4 and |W;| = |Ws| = 2. Since
max {vQy(2W1),vQy(2W2)} < 1, we obtain that 2Z7 # 27, and hence 2 =
041 < vog(2W') = voy(2W3) < 1, a contradiction. Thus we must have that
max {voy (2W1),vo5(2W2) } > 2, and assert that min {vog(2W7),vaz(2Ws)} =
0. Assume to the contrary that min {vaz(2W1),vaz(2W2)} > 1. Then we may
suppose by shifting if necessary that 2y = 0 (mod n), and by symmetry that
vz (2W1) < vog(2W3). Since supp(W7) N supp(W2) = 0, we can assume that
vy(W1) = 0 and vz(W2) > 2, and it follows that

0<W1 : <y+Z>[‘”) = 0(W2 G+ 35) (y-y)[‘”) :

Thus A1 ensures that (7 - ) and (W - (7 - 7)[=1) are both product-one se-
quences, a contradiction. Hence min {vo5(2W1), va5(2W2) } = 0, and it follows
that

041 < vay(2W') = max {voy(2(W1 - (71 - T3) 7)), vag (2Wa)} < €41,
Thus voy(2W') = voy(2W3) = [Wa| = £+ 1. If [W| > n + 2, then £ > , and
thus voy(2W') > [W'| 42 — § > £+ 2, a contradiction. Therefore |[W| = n and
2W, = (29)15) = (272) (3] with voz (2W;) = 0. O

From now on, we assume that (1, Z3) is chosen to make |H| maximal.

SUBCASE 2.1. H is non-trivial.
If n = 4, then H C 2(Z/4Z) = Cy implies that H = 2(Z/4Z), whence
> 0(2W') = 2(Z/4Z), a contradiction. Thus we can assume that n > 6.
Suppose that [2(Z/nZ) : H] > 3. Then |H| < ¢, and since £ > § — 1, we
have

vo(ou(2W")) > f+1+g—ﬁ > (+1+3|H|-3.

Then it follows that min {vy (¢ (2W1)), vy (¢ (2W2))} > 3|H| — 3, for other-
wise, we obtain that

Vo (0 (2W)) < vy(dm(2W1)) + vy (¢m(2Wa)) < (€4 1)+ (3|H| - 4),
a contradiction. Moreover, we obtain that max {vy (¢ (2W1)), v, (¢n(2W2))}

> 3|H| — 1, for otherwise 3|H| — 2 < 5 —2 < {—1 implies that

Vo (0 (2W")) < vy (¢ (2W1)) + vy (¢ (2W2)) < (€ —1) + (3[H| - 2),

a contradiction. Then it suffices to show the case when v, (¢H(2Wl)) <
Vg (¢ (2W2)). Indeed the other case when vy (¢n(2W1)) > vy (¢u(2Ws2)) fol-
lows by an identical argument. Since g € (2(Z/nZ))/H, by shifting if neces-
sary, we can assume that g = H, whence |(2W1)g| > 3|H|—3 and |(2W2)g| >
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3|H|—1. Since H is a non-trivial cyclic group, it follows by s(H) = 2|H|—1 that
there exist Uy | W5 and Uz | W2 such that 2U; and 2U; are zero-sum sequences
over H of length |Uy| = |[Uy| = |H|. Since |(2(W- Uy ), | > 2/H| - 1,
there also exists Us | Wa - Ug[fl] such that 2Us is a zero-sum sequence over
H of length |Us| = |H|. Since o(Uy) € {0,2} for all k& € [1,3], there ex-
ist distinct 4,5 € [1,3] such that o(U;) = o(U;). If o(U1) = o(U;) for some
j € [2,3], then o(W; - Ul[_l}) = oWy - U][_l]), and thus A1l implies that
YUy - U;) and (W - (Uy - Uj)[*l]) are both product-one sequences, a con-
tradiction. If o(Uy) = o(Us), then o(Wy - UL 1) = o(Wy - Uy « (Uy - Us) =)
and [Wy - U = B g = Wy - Uy - (Us - Us)lPY). Thus A1 ensures
that (U, « Us) and 9 (W « (Us - U3)l=Y) are both product-one sequences, a
contradiction.

Hence [2(Z/nZ) : H] = 2, and we obtain that vy (¢z(2W')) > |[W’|. Then
we may assume by shifting if necessary that supp(2W’) C H, and hence
supp(W’) C 2(Z/nZ). Since supp(W1) Nsupp(Ws) = 0 and [Wa| > &, we
infer in view of supp(W2) C 2(Z/nZ) that there exists § € supp(W2) with
vy(Wa) > 2. By swapping the role between (Z7,73) and (7,7), we have
that |K| = [H(X,(2W"))| < |H| by the choice of (Z1,73), where W” =
Wi - (Wg (g - y)[—”). Then we assert that 277 € H. If K is trivial, then A2
ensures that 2W; = (2:71)[%], and it follows by n > 6 that 277 € H. If K is
non-trivial, then we must have |K| = |H|, for otherwise [2(Z/nZ) : K] > 3,
and then the argument from the beginning of SUBCASE 2.1 leads to a con-
tradiction. As two subgroups of a finite cyclic group having the same order are
equal, we obtain that K = H, and since W’ and W' share at least one term
in common (n > 6), it follows that the K-coset containing supp(2W") must be
H, whence 227 € H. Thus, in all cases, we obtain that

o(W') = 20(Wy) — 227 € H = %,(2W'),

where the final equality follows from the fact that H is the stabilizer of " ,(2W").
Hence there exists T'| W’ of length |T'| = ¢ such that 20(T) = o(W'), and thus
we infer that o(T) = o(W’-TI=1) and |T| = |[W’-TI-|. Therefore A1 ensures
that (77 - T3) and ¥(W') are both product-one sequences, a contradiction.

SUBCASE 2.2. H is trivial.

By A2, we have 2W, = (23)[3]. If h(W3) > 2, then we may assume that
T3 = T1. By swapping the role between (77, T3) and (T3, %), it follows by the
choice of (Z1,Z3) that H(}_,(2W")) is also trivial, where W" = Wy« (W (23
ﬂ)[_”). Again by A2, we obtain that 2W; = (2z7)!3] with 277 # 275.

If n = 4, then we may assume in view of h(W) > 2 that

W= Wi W =5 (- (33 +2)),
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where 71, T3 € Z/4AZ with 277 # 2T (by A2); Indeed, the other possibility is
that W = Wy - Wa = 7712 .73, which implies that Y(Z1-771) and (T2 - T3) are
both product-one sequences, a contradiction. Since o(W7) = o(Wa), it follows
that 1 = 29 + 1 (mod 2). Thus (W) is the desired sequence for (a).

If n > 6, then it follows by 2W, = (273)[3] and the Pigeonhole Principle
that h(W,) > 2. Thus we obtain that 2W = (2z7)13] . (273)[3], whence

n

W=W W, = (rvl[”] : (xl+g)[2”]> . (m[w] : (xﬁ’;)ww])’

where 77, T3 € Z/nZ with 277 # 273 (by A2), and v,w € [0, §]. Since o(W;) =
o(Ws), it follows that £1 —x2 = v—w (mod 2). All that remains is to show that
ged(wy — 22, 5) = 1. Assume to the contrary that ged (zl — 9, %) =d>2.
Then we set n’ = 2%, and since 2W’ = (2z7) =1 . (223)+1 ] it follows by
n/(2x1 — 222) =0 (mod n) that

Se(2W') = {k(2z7 — 223) — 273 | k € [0,n' — 1]} .

Thus we obtain that 277 — 273 € H(Y_,(2W’)) = H, and since H is trivial, it
follows that 277 = 273, a contradiction. Therefore ged(z1 — 22, %) = 1.

To prove the “In particular” statement, we assume to the contrary that
there exists a minimal product-one sequence S such that S = Sy - Sy, where
Sy € F({a)) and S; € F(G\(«)) with |S5| > n+2. Then we suppose that Sy =
H;€[1,|52H o®it and S7 = Ty - Ty such that 7*(T1) (o™ 7)7* (T) (a®27 - - - @*15217)
= 1¢. Since S € A(G), it follows that

" = (x*(M)a”7) - (v (Ta)a7) - (]

of length |S”| = |S2| > n+2, but this is impossible by the main statement. O

* a'“T) € A(G\ (a>)

i€[3,]Sz2]]

Proposition 3.3. Let G = (o, 7|a?" = 1g, 7> = a", and Ta=a '7) be a
dicyclic group, where n > 2. Let S € F(G) be a minimal product-one sequence
such that |S| > 2n + 2 and supp(S) C G\ (o). Then S is a sequence of length
|S| = 2n + 2 having the form

§ = (7). 5,

where x € [0,2n — 1], and Sy is a sequence of length |So| = n having one of the
following two forms:

(a) So = (a¥7)l.aqvtrr.q¥ir.. ca¥n-37 wheren >3, Y, y1,. .., Yn_3 €
[0,2n — 1] such that 2y # 2z (mod 2n), 2y, # 2z (mod 2n) for all i,
and (y1 4+ +yn—3)+3y+n+x=(n+1)(z+n) (mod 2n).

(b) So = (a¥7), where y € [0,2n — 1] such that 2y # 2z (mod 2n) and
ny+z=(n+1)(z+n) (mod 2n).

In particular, there are no minimal product-one sequences S over G such that
S =515, for some S € F({a)) and Sy € F(G\ () of length |Sa| > 2n+4.
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Proof. For every x € Z, we set T = x+2nZ € Z/2nZ. Let S = H;G[L‘S” a®iT e
A(G) be of length |S| > 2n + 2 with a®'7---a”5IT = 1g, where x1,..., 25| €
[0,2n — 1]. Since S € A(G), it follows that |S| is even, and after renumbering
if necessary, we set

W =%1-...-Zjg) = W1 -Wa € F(Z/2nZ),

where W7 = H;e[1,|S|/2] Toi_1, and Wy = HZG[LISI/Z] To;. Thus we have that
o(Wh) = o(Wa)+ |Wh|r. If we shift the sequence W by ¥ for some y € Z, then
the corresponding sequence S’ = HZE[L\SH a® Y7 is still a minimal product-
one sequence. If S’ has the asserted structure, then the same is true for S
whence we may shift the sequence W whenever this is convenient. For every
subsequence U =71 + ... -7, of W, we denote by ¢(U) = a¥7-...-a¥% 7 the
corresponding subsequence of S.

Al. Let U =U; - Uy be a subsequence of W such that |Uy| = |Us| and o(Uy) =
o(Us) + |Uy|m. Then ¢(U) is a product-one sequence.

Proof of A1. Suppose that Uy =91+ ... Yy, and Uz = Z1 - ... - Z|py,|- Since
o(Uy) = o(Usa) + |U1|m, it follows that

Q¥ T ATl = ot tsm ) -ty TR g

whence ¢ (U) is a product-one sequence. O

If supp(W1) N (supp(W2) +7) # 0, say T1 = Tz + 7, then since o(Wy) =
o(Wa)+|Wim, it follows by A1 that ¢(Z7-73) and ¢ (W - (Z7-72)[" 1) are both
product-one sequences, a contradiction. Therefore supp(W7) N (supp(Wg) +
n) = 0, and since |S| > 2n + 2, it follows that h(W) > 2.

A2. min {vo5(2W1),vo5(2W2)} < 1 for every g € Z/2nZ.

Proof of A2. Assume to the contrary that there exists § € Z/2nZ such that
min {vo5(2W1),va5(2W2)} > 2. Then, for each i € [1,2], we have vg(W;) +
Vg (Ws) = vog(2W;) > 2. We may assume without loss of generality that
vg(W1) > 1. Since supp(W1) N (supp(Ws) +7) = 0, we must have v 7(W2) =
0, whence vz(Ws) > 2. Since supp(W1) N (supp(W2) + 1) = 0, we must have
vg4+m(Wi) = 0, whence vg(W1) > 2. We set Uy = Uy =7+ 7. It follows that
Uq |W1 and U, ‘ Wy such that |U1| = |U2| with U(Ul) = U(UQ) + |U1|ﬁ, and
Wy - U = Wy - U Y with o (Wy - U = o (W - U5 + s - 0 .
Thus A1 ensures that (U - Us) and ¢ (W « (Uy - Uz) =) are both product-one
sequences, a contradiction. O

CASE 1. There exists § € supp(W) such that vz(W) > 2 and 5+ 7 €
supp(W).
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In view of supp(W7) N (supp(Wg) + ﬁ) =}, we may assume without loss of
generality that 5+ (§ +7) | W7. Let

U
and = Mg

/ — = =\ [~
W =W-(y-(¥+n)) 5 5

If >°,2W') = 2(Z/2nZ), then since o(W') + In = 20(Ws) + 2(n — 2y €
2(Z/2nZ), it follows that there exists a subsequence T'| W' of length |T'| = ¢
such that 20(T) = o(W’)+ 7. Hence we infer that o(T) = o(W'-T=1) +|T|7
and |T'| = [W'-T=1|. Thus A1 ensures that ¢(y- (y+7)) and ¢(W’) are both
product-one sequences, a contradiction. Therefore > ,(2W’) C 2(Z/2nZ).

Let H =H(Y_,(2W’)). By Lemma 3.1, we obtain that

1]

Ze2W)] > > min{l vy (eu(@W)} =€+ 1| |H].
9€(2(Z/2nZ))/H

If h(¢m (2W’)) < 4, then
Se@W)| = (|2W'| — €+ 1)[H| > n = |2(Z/2nZ)),

a contradiction. If there exist distinct ¢g1,92 € (2(Z/2nZ))/H such that ¢ <
Vg, (0 (2W")) for all k € [1,2], then

S,@W)| > (20— £+ V)|H| > n = |2(Z/2nZ)],

a contradiction. Thus there exists only one element, say g € (2(Z/2nZ))/H,
such that vy (¢g(2W’)) > ¢, which implies that

X (2W)]
|H|

> W +2- —

SUBCASE 1.1. H is non-trivial.

If [2(Z/2nZ) : H] = 2, then vy(¢u(2W')) > [W’|. We may assume by
shifting if necessary that supp(2W’) C H, and hence supp(W’) C 2(Z/2nZ).
Since vz(W) > 2, it follows that 7 € supp(W’) C 2(Z/2nZ), whence o(W') +
In = 20(Ws) — 2y € H. Thus there exists T | W' of length |T'| = ¢ such that
20(T) = o(W') + ¢7, and hence we infer that o(T) = o(W' - TI=1) + |T|7 and
IT| = W’ TI=U| It follows by A1 that % (7 - (§ + 7)) and 1(W’) are both
product-one sequences, a contradiction.

Therefore [2(Z/2nZ) : H] > 3, and hence |H| < %. Since £ > n, we have

V(o (2W')) > L4+ 1+ (n+1) - > (+2+3|H|-3.

n
|H|
Then min {vy (¢x(2W1)), v (¢u(2W2))} > 3|H| — 2, for otherwise, we obtain
that

Vo (61 (2W)) < vg(hr(2W1)) +vy(0r(2W2)) < (€+1) + (B3|H| = 3),

a contradiction. Since g € (2(Z/2nZ))/H, by shifting if necessary, we can
assume that g = H, whence |(2W;) | > 3|H| — 2 for all i € [1,2]. It follows by
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s(H) = 2|H| —1 that there exist Uy | W; and Vi | W of length |U;| = |V4| = |H|
such that o(Uy),0(V1) € {0,7}. Therefore |(2W - (2U1)[*1])H| > 2|H|—2 and
[(2Wa - 2Vi)7Y) | > 2|H| - 2.

Suppose that there exist Us | W7 - U1[71] and V| Wy - Vl[fl] with |Us] =
|Vo| = |H| and o(Us),o(V2) € {0,m}. If there exists i € [1,2] such that
o(U;) = o(V;) + |H[m, then A1 implies that ¢(U; - V;) and ¢ (W - (U; - V;)[71)
are both product-one sequences, a contradiction. Otherwise, we have o(Uj -
Us) = o(Vh - Vo) + 2|H |7, whence Al ensures that ¢(Uy - Uz - Vi + V) and
w(W (U, - Uy Vy - Vg)[_l]) are both product-one sequences, a contradiction.

Assume that either (2W; (2U1)[’1])H or (2Ws- (2V1)[*1])H dose not contain
a zero-sum subsequence of length |H|, say 2W; - (2U;)[7Y, which then forces
|(2W1-(201)17Y) | = 2|H|—2. By [16, Proposition 5.1.12], there exist hy, hy €
H with ord(hy — ho) = |H]| such that (2W1 : (2U1)[—1])H = pUHI=1, pllHI=
Then ord(h; — he) = |H| ensures that

H = {hlth} + +{h17h2} = E‘H‘fl(h[l‘H‘_l] .th‘—l]) )

|H|-1

Thus we infer that there exist subsequences 2Us | 2W7 - (2U) =Y and 2V3 | 2W5 -
(2V1)[= such that [2Us] = [2V3| = |H| — 1 and o(2U3) = o(2V3). Hence
o(Us) = a(V3) or o(Us) = o(V5) + . If there exists i € {1,3} such that
o(U;) = o(V;)+|U;|m, then A1 implies that v(U;-V;) and o (W« (U;-V;)=1) are
both product-one sequences, a contradiction. Otherwise, we have o(U; - Us) =
o(Vq - V3) + (2|H| — 1), whence A1l ensures that (U; - Us - V; - V3) and
w(W -(Uy-Us-Vq - Vg)[’l]) are both product-one sequences, a contradiction.

SUBCASE 1.2. H is trivial.

Since ¢ = % > n, it follows that vy(2W') > [W'|+2—-n > { + 2.
Hence A2 ensures that min {v,(2W1),vy(2W3)} = 1. If g = 27, it follows by
Y- (g+m) | Wy that vg(2Ws3) = 1, whence £+2 < v,(2W') = v (2W7) —2+1 < ¢,
a contradiction. Thus g # 2y. Since

(42 < v,(2W) = vg(z(vm (7~ @+ﬁ))[—1l)) + vy (2Wh),

we have vg(2W7) = 1 and v4(2W3) = £+ 1. Then v,(2W') = £+ 2. If |[W| >
2n+4, then ¢ > n+1, and hence v,(2W') > |W'|+2—n > ¢+3, a contradiction.
Therefore |W| = 2n + 2, £ = n, 2W, = (27)"*1 and voz(2W;) = 1 for some
T € Z/2nZ with 2T = g # 27.

Since supp(W7)N ( supp(Ws) +ﬁ) = (), we may assume that Wy = 1"+ and
vz(W1) = 1. It follows by vz(W) > 2 and |[W1| = n+1 that Z-5-7- (g+n) | Wh.
Then n > 3 and

W =W, - Wy = (z-T) -z,
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where T € F(Z/2nZ) with |T| = n such that 2% ¢ supp(2T) and - (y+7) | T.
Since a(W1) = o(Wa) + |Wim, it follows that o(T)+T = (n+1)T+ (n+ 1)m.
Therefore (W) is the desired sequence for (a).

CASE 2. For every T € supp(W) with vz(W) > 2, we have that T+ 7 ¢
supp(W).
If h(2W) < 2, then we have
2n+2 < |[W| = 2W| < h(2W)|2(Z/2nZ)| < 2n,

a contradiction, and from the case hypothesis, we have h(W) = h(2W) > 3.
Let T € supp(W) be an element with vz(W) = h(W) > 3, and assume without
loss of generality that

V}(Wl) Z Vf(Wg) Wlth Vf(Wl) 2 2.
If h((W - (z-7)[7) < 1, then it follows by the case hypothesis that
on < [W|-2=|W-@ -0V <|(Z/2n2)\ {T+7}| = 2n -1,

a contradiction, whence h(W « (Z - %)I"1) > 2. Let 7 € supp(W - (Z - 7)) be
an element with vg(W - (Z - 7)[71) > 2, and let
!

W =w-z-z-g-p and (= @ = @ —2.
Suppose in addition that 7 is chosen to satisfy either that vg(W - (z-7)71) =
h(W - (z - 7)I7Y), or that both vy(Ws) > 3 and h(W) < £+ 2.

If >, (2W') = 2(Z/2nZ), then since o (W') +{n = 20(Ws) + (20 +2)n— 2T —
2y € 2(Z/2nZ), it follows that there exists a subsequence T | W' of length |T'| =
¢ such that 20(T) = o(W') + £@. Hence we infer o(T) = o(W' - TI7Y) +|T|m
and |T| = [W’-T[=1]. Thus A1 ensures that 9 (z2) - 51?) and (W’) are both
product-one sequences, a contradiction. Therefore ), (2W") C 2(Z/2nZ).

Let H =H(>,(2W’)). As at the start of the proof of CASE 1, it follows
by Lemma 3.1 that there exists only one element, say g € (2(Z/2nZ))/H, such
that vy (¢m (2W’)) > £+ 1, which implies that

[Ze(2W)]
|H|

n

v (o (2W')) > 2W'[+1 — ]

> W +2—

SUBCASE 2.1. H is non-trivial.

If n = 2, then H C 2(Z/4Z) = Cy implies that H = 2(Z/4Z), whence
> 0(2W') =2(Z/AZ), a contradiction. Thus we can assume that n > 3.

If [2(Z/2nZ) : H] = 2, then vy(¢y(2W’)) > [W'|. We may assume by
shifting if necessary that supp(2W’) C H, and hence supp(W’) C 2(Z/2nZ).
We assert that o(W') + n = 20(Ws) — 2 — 2y € H. Clearly this holds
true for T = §. Suppose T # g. Since vz(W) = h(W) > 3, it follows that
T € supp(W’) C 2(Z/2nZ). If vz(W3) > 3, then § € supp(W') C 2(Z/2nZ).
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Suppose that vy(W - (7 - 7)["U) = h(W - (7 - 7)[71), and we need to verify
g € supp(W') C 2(Z/2nZ). If h(2W') < 2, then
2n —2 < |W'| = 2W'| < h2W")|H| < n,

a contradiction to n > 3. Hence, in view of the main case hypothesis, we have
h(W') = h(2W’) > 3. Since h(W - (z - 7)71) > h(W’) > 3, it follows that
gy € supp(W') C 2(Z/2nZ). Thus o(W’') + ¢n € H, which implies that there
exists a subsequence T' | W’ of length |T'| = ¢ such that 20(T) = o(W') + ¢n.
Then o(T) = o(W'- T +|T|7 and |T| = [W’ - TI=U|. Tt follows by A1 that
w(f[Q] . ym) and ¥(W') are both product-one sequences, a contradiction.

Therefore [2(Z/2nZ) : H] > 3, and hence |H| < %. Since £ = ILQI‘ >n—1,
we have

Vo(om(@2W')) > L+ 14n—— > (+1+3[H|-3.

n
|H|
We assert that min {vy(¢r(2W1)), vy (om(2W2))} > 3|H| — 2. Assume to the
contrary that min {vy (¢u (2W1)), vy (¢om(2W2)) } < 3[H|-3. If vy (¢u (2W2)) <
¢, then vz(W7) > 2 implies that

Vg (o (2W')) < v, (qu (2(W, - (T - f)[_l]))> + vy (o (2Wa)) < £+ 3|H| -3,
a contradiction. Thus v, (¢H(2Wg)) > {¢+1 > n, and hence h(2W,) > \T?ﬂ > 3.
The main case hypothesis ensures that h(Ws) = h(2W3) > 3. If vz(W2) > 2,
then vy (61 (2W")) = vy (611 (2W1-@-2) 1)) ) +v, (61 (202 (7-7) 1)) ) <
¢+ 3|H| — 3, a contradiction. Suppose that vz(1W2) < 1. Then we infer that
vg(W - (@ -3)F) = h(W - (7 - 7)), Tt follows by h(W2) > 3 that there
exists Z € supp(W2) with vz(Ws) = h(WW3) > 3. Then we assert that vz(W) =
h(W) < £+ 2. Assume to the contrary that vz(W) = h(W) > ¢+ 3. Since
vz(W1) > 2, A2 implies W, = ZI*+? with vz(W;) = 1, whence § = Z. By
the main case hypothesis, we have voz(2W’) = vz(W’) = ¢ — 1. Since g €
(2(Z/2nZ))/H is the only element satisfying vy (¢g(2W')) > £+ 1 > 3, it
follows again by the main case hypothesis that ¢ = 2z, Wy = 7 - 2l and
vzW - (z-7)71) = h(W - (z - 7)I-1). By swapping the role between 7 and Z,
the argument used in the case above when v(1W5) > 2 leads to a contradiction.
Thus vz(W) = h(W) < £+ 2, and then the swapping argument again leads
to a contradiction. Since g € (2(Z/2n7Z))/H, by shifting if necessary, we can
assume that g = H, whence |(2W;) | > 3|H| — 2 for all i € [1,2]. By the same
lines of the proof of SUBCASE 1.1, we get a contradiction to S € A(G).

SUBCASE 2.2. H is trivial.
Since ¢ = |L2\ > n — 1, it follows that vy(2W') = vy(ou(2W')) > [W'| +
2—n > {+1, and by A2,

h(2W) = voz(2W) = voz(2W1) + voz(2W2) < (€+2)+1 = £+ 3.
Thus we have voz(2W') < voz(2W) —2 < £+ 1.
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Suppose that £ = 1. Then |W| =6, n = 2, and [2W’| = 2. Hence v,(2W’) =
2 and W =zl . 5P . w7 - w5 for some wr, w5 € Z/2n7Z with 2wy = 2w; = g. If
wy = W +7, then ¢ (wy - wz) and w(E[Q] -@p]) are both product-one sequences,
a contradiction. Therefore Wy = ws. Since ord(a’r) = 4 for all i € [0,2n — 1]
and (W) is a product-one sequence, we obtain that [{Z,7,w1}| > 2. Since
vz(W) = h(W) > 3 and h(W - (z - )["Y) > 2, it follows that either = 7 or
T = wy. Since o(Wy) = o(Wa) + |Wh|m, we have

W =W, Wy = 785 (f.@m)

for some W € Z/4Z with 2w # 2Z. Thus (W) is the desired sequence for (b).

Suppose that ¢ > 2. We assume to the contrary that vz(W3) > 3 and
h(W) < £+ 2. Since voz (2W) = vz(W) < £+ 2, it follows that vez(2W') < ¢,
whence g # 27. In view of vz(W1) > 2, vz(Ws) > 2, and A2, we must have
2y # 2x. Let g = 2z for some z € Z/2nZ. If g # 27, then by the main case
hypothesis, Z, ¥ and Z are all distinct elements with vz(W) > vz(W) > £+ 1
and vz(W) > 3, implying 20 +4 = |W| > 2({+1) + 3 = 2{+5, a contradiction.
Thus g = 2y, and again by the main case hypothesis, we have Z = 3. Hence
vg(W - (@ - 7)7) = vz(W’) 4+ 2 > £ + 3, contradicting that h(W) < ¢+ 2.

Therefore vg(W - (T - E)[_l]) =h(W-(z- E)[_l])7 and in view of the main
case hypothesis, we have

3< 41 < vg(2W') < VQg(Z( -(z-

Then it follows by |2W| = 2¢ 4+ 4 and h(2W
If 2§ = g, then 27 # 27 and voz(2W) > vay
|2W| > 2¢ + 6, a contradiction. Thus 27 # g.

If 27 = 27, then voz(2W) = 2+ voz (2(W - (z - 7)I7Y)) > £+ 3 implies that
voz(2W) =€+ 3 and v,(2W') = £+ 1. If |W| > 2n + 4, then ¢ > n, and hence
(+1=v,(2W') > |W'|4+2—n > {+2, a contradiction. Thus |[W| = 2n+2 and
¢ =n—1. Since vz(W7) > vz(Ws), we have vaz(2W7) > vaz(2W53), and hence
A2 ensures that voz(2W5) = 1. Tt follows in view of the main case hypothesis
that

7)™
¢+ 3 that |{2%,27y,9}| = 2.
) >

<
2w {4+ 3, whence 20 + 4 =

/\\_/

W = W - Wy = gt (j.z["]) 7
where Z € Z/2nZ with 2Z = g # 2. Since o(W1) = o(W3) + |W1|7, we have
nz+x = (n+1)(zx+n) (mod 2n). Therefore ¢)(W) is the desired sequence for
(b).

If 27 = g, then voz(2W) > 2 4+ vy(2W') > ¢ + 3 implies that voz(2W) =
¢+ 3 and vo5(2W) = £ + 1. The same argument as shown above ensures that
W =Wy - Wy =zt . (7. gl"), where 7,5 € Z/2nZ with 27 # 27, and
ny+z=(n+1)(x+n) (mod 2n). Thus (W) is the desired sequence for (b).

To prove the “In particular” statement, we assume to the contrary that there
exists a minimal product-one sequence S such that § = Sy - So, where 57 €
F({a)) and S € F(G\(a)) of length |S5| > 2n+4. Then we suppose that S, =
H;€[1,|52H ao®iT and Sy = Ty - Ty such that 7 (T ) (o™ 7)n* (Ta) (™27 - - - &®15217)
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= 1. Since S € A(G), it follows that
" = (r(m)arr) - (w (T)ar) - ([T, o a®7) € AG\ (o)

and |S”| = |S2| > 2n + 4, a contradiction to the main statement. O

i€[3,] 2]

4. The main results

Theorem 4.1. Let G be a dihedral group of order 2n, where n € N>3 is odd.
A sequence S over G of length D(G) is a minimal product-one sequence if and
only if it has one of the following two forms:
(a) There exist a, 7 € G such that G = (o, 7|a" = 72 = 1¢ and Ta =
a~'7) and S = a2 . 711
(b) There exist o, T € G and i,7 € [0,n — 1] with ged(i — j,n) = 1 such that
G=(a,7|a”*=7%>=1g and Ta =a"'7) and S = (‘1) . (ad 7).
Proof. We fix o, 7 € G such that G = (o, 7|a" =72 =1 and Ta = o 17).
Then
G ={d'lielo,n—1]} U{a'r|ie0,n—1]}.
Let Gy = G\ (). If |Sg,| = 0, then S € F({)), and since |S| = 2n > D((a)) =
n, it follows that S is not a minimal product-one sequence, a contradiction.
Since S is a product-one sequence, we have that |Sg,| is even. We distinguish
three cases depending on |S¢g,|-
CASE 1. |Sq,| = 2.
Then we may assume by changing generating set if necessary that S =
Ty -7 Ty - (1) with 7*(T1)(7)7*(T2)(a*T) = 1g, where z € [0,n — 1] and
T1,T, € F({a)). Since S € A(G), it follows that Ty and T must be both

product-one free sequences, and thus |T7| = |T»| = n—1. Then we may assume
by Lemma 2.2.1 that

Ty = o and T, = (/)Y
where j € [0,n — 1] with ged(j,n) = 1. Since 7*(T1)(7)7*(T2)(a®T) = 1g, it
follows that —1 = —j 4+ = (mod n), and thus it suffices to show that x = 0;
Indeed, if this holds, then j = 1, whence S = al?”~2 . 712 which is the desired

sequence for (a).
Assume to the contrary that = € [1,n — 1] so that j # 1.

SUBCASE 1.1. j is even.

Let S; = o/ - a7 € B(G). Since j is even and n is odd, =1 = —j 4+ z
(mod n) implies that

Sy = ol'T 1 (@) (0 - 1) - alT L (@) (0 0Fr) € B(G),
whence S = S; - 52 contradicts that S € A(G).
SUBCASE 1.2. j is odd.
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Since —1 = —j + z (mod n), we obtain that x = j — 1, whence z is even.
Then n — 1 — z is even, and we obtain that

(@) 0l ) 7 (05 (0)) a7 = 1.

n—l—=x

Let S; = ol™ =71 (@))["27] . all € F((a)). Since x is even, it follows that
|S1| =n—14%F > n, and hence S; has a product-one subsequence W. Thus W

and S - W= are both product-one sequences, contradicting that S € A(G).
CASE 2. |Sg,| € [4,2n —2].

Then we may assume by changing generating set if necessary that S =Ty -7-
Ty T3+ (a”7), where z € [0,n—1], T1,T5 € F({a)), and T3 € F(Go) with |T3| =
|Sc,| — 2. Moreover, we suppose that 7*(T1)(7)m* (1% - T4) (o) = 1¢, where
Ty = H:€[1,|T3|] g; is an ordered sequence and T4 = H;E[LlTs\/Q] (92i—192i) €
F({a)). Then Ty and Tj - T§ are both product-one free sequences and

LGO; —2 >n.
Let Th=p1+...op), T2 = f1--..+ fimy), and T, =q ...+ qqy- Then we
consider

e Hy={p1, pip2, ---, (p1---pi1))}, and

o Hy={q1, q1q2, .-, (@1~ qy), (@~ qry i), (@ gy frfa),

(g1 quyfrfafa)s -y (@ qoyfie fim) }-

Since both Ty and T»-T4 are product-one free, it follows that Hy, Hy C {(a)\{l¢}
with |H1| = |T1‘, |H2‘ = |T2 . Té|, and |H1| + ‘H2| = |T1 . TQ . Té| Z n.
Since |[(a)| = n, we obtain that H; N Hy # (), and hence we infer that there
exist Wy | Ty, Wa | Tz, and W} | T4 such that W} is a non-trivial sequence and
7 (Wy) = n*(Wo-W3). Let W3 denote the corresponding subsequence of T3 and
assume that W5 = (a¥'7)-(a¥27)-W{'. Then Z = Wy« (a¥'1) - Wy (a¥21) - WY
and S - ZI=1 are both product-one sequences, contradicting that S € A(G).

CASE 3. |S¢,| = 2n.
Since |S| = 2n = |Sg, |, we may assume that

Ty - To - T3| = <2n— |SG0|) +

L

S =aMr.abirecafhr oot with ofrafireodfrratir = g,

where k1,...,kn, l1,..., 0, € [0,n—1]. Then we set S’ = aF1=4 .. .afn—tn ¢
B({a)) of length |S’| = n. Since S € A(G), it follows that S" € A((a)), and
by applying Lemma 2.2.1,

(41) klfflzkgffngknfgn (modn)

with ged(k; — ¢;,n) = 1 for all 4 € [1,n]. Let j € [1,n — 1]. Then we observe

that

afiraliralitir = ofi—litkinig = qRiviralizalir
k

By swapping the role between i1 and ai+17, we obtain that

S = afimh. kil gk gk A((a))
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of length |S”| = n. Hence it follows again by applying Lemma 2.2.1 that

ki—b = =kjpy—L4j=kj—4ljip1 = =k,—¥{, (modn),
and thus (4.1) ensures that k; = k; 1, whence ky = ko = --- = k,,. Similarly
we also obtain that ¢; = fo = --- = £,,, whence S = (a1 7). (a/17)["] with
ged(ky — £1,n) = 1, which is the desired sequence for (b). O

Theorem 4.2. Let G be a dihedral group of order 2n, wheren € N>y is even. A
sequence S over G of length D(G) is a minimal product-one sequence if and only
if there exist o, T € G such that G = (o, 7|a" = 72 = 1g and Ta = a~l7)
and S = ol"t3-2 . 1. (a% 7).

Proof. We fix a,7 € G such that G = (o, 7|a" =72 = 1g and Ta = a~'7).
Then
G ={d'lielo,n—1]} U{a'r|ie0,n—1]}.

Let Go = G\ (o). If [Sg,| = 0, then S € F((e)), and since |S| = n +
3 > D(<a>) = n, it follows that S is not a minimal product-one sequence, a
contradiction. Since S is a product-one sequence, Proposition 3.2 ensures that
|Sc,| € [2,n] is even. We distinguish two cases depending on |Sg,|.

CASE 1. [Sg,| = 2.

Then we may assume by changing generating set if necessary that S =
Ty -7 Ty - (&®7) with #*(Ty)(7)7*(T2) (1) = 1¢, where z € [0,n — 1] and
Ty, T, € F({a)). Since S € A(G), it follows that Ty and T must be both
product-one free sequences.

If |Ty| > 2 and [T3| > %, then T% and T3 € F((a?)) (see (3.1)) with |TZ| > 2
and [T§| > 2, and it follows by D({(a?)) = % that there exist Wy | T} and W3 | T5
such that W and W3 are product-one sequences over («?). Since T} and Ty
are product-one free, we obtain that 7*(W;) = a? = 7*(W,). Therefore
Wiy - Wy and S« (W; - Wo)[=1 are both product-one sequences, contradicting
that S € A(G).

Thus either |T7| < §—1or |T3| < §—1, and we may assume that [T = §—1
and |Ty| = n — 1. Then Lemma 2.2.1 implies that 75 = (a?)™~1 for some odd
j € [1,n—1]. Then we may assume by changing generating set if necessary that
j=1sothat S=Ts-7-al""U. (a¥r), where y € [0,n — 1] and T3 € F((a)).
Since T3 - - 7 - (a¥7) is a product-one sequence, we have that

Ts-ol2l .7 o571 (0¥7) € B(G).

It follows that T5-al3] is a product-one free sequence of length n— 1, and again
by Lemma 2.2.1 that T3 = ol2 7). Since (2 — 1) = (n — 1) +y (mod n), we
infer that y = %, and the assertion follows.

CASE 2. [Sg,| € [4,n].
SUBCASE 2.1. n = 4.
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Then we may assume by changing generating set if necessary that S =

a™ a7 a®7T - V7 - of1 for some 1,712 € [1,3] and z,y,z € [0,3]. If
a"arara¥Ta*T = 1g, then 8/ = a™ - a™ -a™% - a¥7% € A((a)), and
hence it follows by applying Lemma 2.2.1 that r; = rp, = s =y —2 = j

(mod 4) for some odd j € [1,3]. Thus S = S - S, where S1 = 7-a™ - a*7
and S = a¥7 - " - @®1 are both product-one sequences, contradicting that
S € A(G). Thus we can assume that o™ Ta™2a*ra¥Ta*T = 1, and we consider

S =a" a7t € B(G).
Then, by the same argument as shown above, we obtain that S” ¢ A(G).
Let S” = Uy - Uy for some Uy, Uy € B(G). Since S is a minimal product-one
sequence, we must have that

—7rg

Uy =a" -« and U =7-a1-aY7.a°7

are both minimal product-one sequences, whence we obtain that r; = 9. Since
U, € A(G), Proposition 3.2 implies that

Uy=71-ar-d*r-a3r or U, = (oz”“T)[Q] coMiT a2
where 1,91 € [0,3] with 1 = y; + 1 (mod 2). Since S € A(G), we obtain
that either 11 =ro =1 orry =ry = 3. If 1y =7y = 1, then
S = (a-7-ar)-(a-a’7-a37) or S = (a-a®T-a¥'7)-(a® T - 27),

contradicting that S € A(G). If 1y = rg = 3, then

S = (r-a3-ar)-(a®t-a®a®r) or S = (a-a®1-a¥ 1) (" 103V )

contradicting that S € A(G).
SUBCASE 2.2. n > 6.

Then we may assume by changing generating set if necessary that S
Ty -7-Tp - T3 - (@®7), where z € [0,n — 1], Ty, T» € F({a)) with [T >
|T1] > 0, and T3 € F(Go) with |T5] = |Sg,| — 2. Moreover, we suppose
that 7 (T1)(7)7* (T2 - T%) (a”7) = lg, where Tj = H;e[l,\Tsll g; is an ordered
sequence and T3 = [[7c(y 1,)/2(92i192i) € F({a)). Then Ty and T, - T3 are
both product-one free sequences and

Vol

Ty Ty - T} = (n—l—g— \SGO\) +‘SG°# >n-1.

If |11 -T5-T4| > n, then we infer that there exist subsequences Wy | Ty, Wa | T,
and W | T} such that W} is a non-trivial sequence (this follows by the same
argument as used in CASE 2 of Theorem 4.1) and 7*(Wy) = 7*(Wa - Wj).
Let W3 denote the corresponding subsequence of T3 and assume that W5 =
(a1 7) - (¥27) - W, Then Z = Wy« (a¥%'7) - Wy - (a¥27) - W and S - ZI-1 are
both product-one sequences, contradicting that S € A(G).

Suppose that [T} - Ty - T3] = n — 1. Then |T3| = § — 1 and |T5| > 4. Since
T» - T4 is a product-one free sequence with |15 - T4| > 32 —1 > 2L it follows
by Lemma 2.2 that Ty « T4 is g-smooth for some g € (a) with ord(g) = n, and
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for every z € TI(T5 - T}), there exists a subsequence W | T5 - T4 with g| W such
that 7*(W) = z. Since |T3| = § — 1, Lemma 2.2.3 implies that g |T3.

If II(Ty) NI(Ty - T4) # O, then there exist subsequences Wi | Ty, Wa | T,
and W3 | T4 such that W3 is a non-trivial sequence (this follows from the above
paragraph that we can choose Wa-W3 | T5-T4 such that g | Wa-W4 and g | T%) and
7 (Wy) = n*(Wo-W4). Let W3 denote the corresponding subsequence of T3 and
assume that W5 = (a¥'7)-(a¥27)-W{. Then Z = Wy - (a¥'1) - Wy - (a¥27) - WY
and S - ZI=1 are both product-one sequences, contradicting that S € A(G).
Hence TI(Ty) NTI(Ty - T4) = 0, and it follows that T, '+ Ty - T} is a product-one
free sequence of length n—1. By Lemma 2.2.1, there exists an odd j € [1,n—1]
such that

T Ty T, = (aj)[n—ll ’
and we may assume by changing generating set if necessary that j = 1 so that
x=1. If |[Ty| > 1, then
—1) (1711]

n—2—2|Ty | n—2—2|Ty |
and allt = .. al Eaa

(OZ'Q . T

are both product-one sequences, contradicting that S € A(G). Thus |T1| = 0,
and then we obtain that T3 = (a"™'7 - aTT)[Efl] for some r € [0,n — 1]
(this follows by the swapping argument as used in CASE 3 of Theorem 4.1).
This implies that S = (a -7+ a7r) -+ ("7« a - a"7)3 71 contradicting that

S e A(G). O

Theorem 4.3. Let G be a dicyclic group of order 4n, wheren > 2. A sequence
S over G of length D(G) is a minimal product-one sequence if and only if there
exist a, 7 € G such that G = (o, 7| a® = 1g, 72> = a”, and Ta =a~'71) and
S = o3n—2 . 2]

Proof. We fix a,7 € G such that G = (o, 7|a?" = 1g, 72 = o, and Ta =
a~!7). Then

G ={a'lie0,2n-1]} U {a’T|i€[0,2n—1]}.

Let Go = G\ (). If |Sg,| = 0, then S € F({e)), and since [S] = 3n > D((a)) =
2n, it follows that S is not a minimal product-one sequence, a contradiction.
Since S is a product-one sequence, Proposition 3.3 ensures that |Sg, | € [2,2n+
2] is even. We distinguish two cases depending on |Sg, |-

CASE 1. |Sg,| = 2.

Then we may assume by changing generating set if necessary that S =
Ty - 7Ty - (&®7) with 7*(T1)(7)7*(T2)(a*T) = 1, where © € [0,2n — 1] and
T, T, € F({a)). Since S € A(G), it follows that Ty and T must be both
product-one free sequences.

If [T1| > n and |T| > n, then T? and T3 € F({a?)) (see (3.1)) with
ITZ| > n and |T3| > n, and it follows by D((a?)) = n that there exist Wy | T}
and Wy | Ty such that W2 and W2 are product-one sequence over {a?). Since T}
and T are product-one free, we obtain that 7* (W) = o™ = n*(W3). Therefore
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Wy - Wy and S - (W7 - Wg)[_l] are both product-one sequences, contradicting
that S € A(G).

Thus either |T1| < n—1or [T3] < n—1, and we may assume that || =n—1
and |T5| = 2n—1. Then Lemma 2.2.1 implies that T, = (a?)2"~1 for some odd
j € [1,2n — 1]. Then we may assume by changing generating set if necessary
that j = 1 so that S = T3 -7 - al®~U. (a¥7), where y € [0,2n — 1] and
T3 € F({a)). Since Ts - a - 7 - (a¥7) is a product-one sequence, we have that

Ty - a7 a1 (a¥7) € B(G).

It follows that T3 - al™ is a product-one free sequence of length 2n — 1, and
again by Lemma 2.2.1 that T3 = al»" Y. Since (n —1) = 2n — 1) +y +n
(mod 2n), we infer that y = 0, and the assertion follows.

CASE 2. |Sg,| € [4,2n+2).

SUBCASE 2.1. n = 2.

Then G = Qs is the quaternion group. If |Sg,| = 6, then by Proposition

3.3, we have that

S = (a%)[‘” . (ayT)[2]
where z,y € [0, 3] such that 2z £ 2y (mod 4) and 2y + x = 3(z + 2) (mod 4).
Since 2y = 2z + 2 (mod 4), it follows by letting a; = o*7 and 71 = a¥7 that
S = a[14] . 71[2], where G = (a1, 7 |a} = 1g, 7 = o2, and 1oy = o] 1),
whence the assertion follows.

Suppose that |Sg,| = 4, and we may assume by changing generating set if
necessary that S = o™ -a"2-7-a”7-a¥7-a*7 for some r1,72 € [1,3] and x,y, z €
[0,3]. If a™ a™Ta"Ta¥Ta*T = 1g, then §' = a™-a™-a~ " 2.av=*+2 € A((a)),
and hence it follows by applying Lemma 2.2.1 that ry =ry = -2 +2=y— 2+
2 =7 (mod 4) for some odd j € [1,3]. Thus S = S;-Ss, where S; = o™ -a*7-7T
and S = " - a*7 - Y7 are both product-one sequences, contradicting that
S € A(G). Hence we can assume that a™7ra™a*ra¥7a*t = lg, and we
consider

S" =a"a T " aVT -t € B(G).

Then, by the same argument as shown above, we obtain that S” ¢ A(G).
Let S” = Uy - Uy for some Uy, Uy € B(G). Since S is a minimal product-one
sequence, we must have that

Up=a"-a™™ and U =7-a"7-a%7-a%7

are both minimal product-one sequences. Then r; = r5, and we may assume

that Ta®ta¥rta*t = 1lg. Then Uz € A(G) implies that a=2+2 . q¥=*12 €
A((e)), whence z = y — z (mod 4). Since (a*7 - 7) - (@7 - 7) is not a minimal

product-one sequence, it follows by case distinction on z,y, z that we have

Uy € {7[4], 72, (047)[2], 72, (ag'r)[z], 2.ar. ar,

7 (ar)B . a?r, 7 P (0B roar-oPre a37} .
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Since S € A(G), we can assume by changing the generator « for a? if necessary
that 7, = 7o = 1, and thus we must have Uy = 714, for otherwise, S is the
product of two product-one sequences, a contradiction. By letting oy = 7 and
71 = o™, we obtain that S = a[14] . 71[2], where G = (a1, 71 |af = 1g, & =
a%, and ma; = 011_1’1'1>, whence the assertion follows.

SUBCASE 2.2. n > 3.

Then we may assume by changing generating set if necessary that S =
Ty -7-To - Ty - o®r, where z € [0,2n — 1], T1,T» € F((o)) with |To| >
|Ty| > 0, and T5 € F(Gp) with |T5] = |Sg,| — 2. Moreover, we suppose
that 7 (T1)(1)7* (T2 - T3)(a"T) = 1, where T3 = [[ic( 5, 9i is an ordered
sequence and T4 = H;e[l"TS‘/Q] (92i-192i) € F({@)). Then Ty and Ty - T4 are
both product-one free sequences and

S| — 2
Ty - Ty - T4 = (3n—|SGO|)+% > o —2.

If |Ty - T5-T4| > 2n, then we infer that there exists a product-one subsequence
Z of S such that S - ZI=1 is again a product-one sequence (this follows by the
same line of the proof as used in SUBCASE 2.2 of Theorem 4.2), contradicting
that S € A(G).

Suppose that |1} - Tp - T3| = 2n — 1. Then |T3] =n — 1 and |T3| > 5. Since
Ty - T} is a product-one free sequence with [T - T4| > 22 — 1 > 22EL it follows
by Lemma 2.2 that T - T4 is g-smooth for some g € {a) with ord(g) = 2n, and
for every z € II(T5 - T}), there exists a subsequence W | T5 - T4 with g| W such
that 7*(W) = z. Since |T5| = n — 1, Lemma 2.2.3 implies that ¢ | T5.

IEII(Th) NII(Ty - T5) # O, then there exist subsequences Wy | Ty, Wa | Ta, and
W4 | T4 such that WY is a non-trivial sequence (as argued in similar cases) and
7 (Wy) = n*(Wo-W3). Let W3 denote the corresponding subsequence of T3 and
assume that W5 = (a¥'7)-(a¥27)-W{. Then Z = Wy - (a¥'1) - Wy - (a¥21) - WY
and S - ZI=1 are both product-one sequences, contradicting that S & A(G).
Hence II(T})NII(T3-T4) = , and it follows that T, *-T5-T} is a product-one free
sequence of length 2n — 1. By Lemma 2.2.1, there exists an odd j € [1,2n — 1]
such that

Ty = (o)
and we may assume by changing generating set if necessary that j = 1 so that
=14 n (mod 2n). Note that 2n — 2 — 2|Ty| > 0 is even. If |T}| > 1, then

T e LT B e B e s IS
are both product-one sequences, contradicting that S € A(G). Thus |T1| = 0,
and we obtain that T3 = (a7 . a"t"7) =1 for some 7 € [0,2n — 1] (as
argued in similar cases). Since x = 1 + n (mod 2n), we obtain that S =

(a-7-a®7)« (a7« a"t17)"= 1 contradicting that S € A(G).
Suppose that [Ty + T - T3| = 2n — 2. Then |T3| = n and |T5| > § — 1. Since

T; - T4 is a product-one free sequence with |75 - 74| > 37" —-1> 2”2"’ L it follows
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by Lemma 2.2 that T - T4 is g-smooth for some g € {a) with ord(g) = 2n, and
for every z € II(T5 - T}), there exists a subsequence W | T5 - T4 with g| W such
that 7*(W) = z. Since |T5| > n — 1, Lemma 2.2.3 implies that ¢ | T}.

I II(T) NII(Ty - T5) # O, then there exist subsequences Wy | Ty, Wa | Ta, and
W3 | T such that W3 is a non-trivial sequence (as argued in similar cases) and
7 (Wy) = n*(Wo-W3). Let W3 denote the corresponding subsequence of T3 and
assume that W5 = (a¥'7)-(a¥27)-W{'. Then Z = Wy - (a¥'1) - Wy - (a¥27) - WY
and S - ZI=1 are both product-one sequences, contradicting that S € A(G).
Hence TI(T; ) NTI(T5-T4) = @, and it follows that T, '-T,-T4 is a product-one free
sequence of length 2n — 2. By Lemma 2.2.2, there exists an odd j € [1,2n — 1]
such that either

o Ty T, = (aj)[Zn—s]

. a2j or T171 . T2 . T?/) _ (aj)[QTL—Q] ,

and we may assume by changing generating set if necessary that j = 1 so that
either

T Ty Ty = ol 302 whence z =1+n (mod 2n),
or else
TN Ty Ty = a2 whence # = 2+ n  (mod 2n).

Suppose that T+ Ty - T} = ol>=3.a? and © = 14+n (mod 2n). If [T}| > 1
and a2 € supp(7}), then

(072 casa) - (o ofl) (D= and oli*

are both product-one sequences, contradicting that S € A(G). If |[T1]| > 1 and
a~2 ¢ supp(T}), then

2n—4—2|Ty | 2n—4—2|Ty |
] — ]

'T‘Oé[ 2 z

QT

2n—4—2|Tq |

(a . a_1)[IT1H and  o? .ol a0

o’T

are both product-one sequences, contradicting that S € A(G). Thus we obtain
that |T1| =0.

If o? € supp(7T3), then T3 = (a""'7 - " "7) ] for some 7 € [0,2n — 1] (as
argued in similar cases). Since z =1+ n (mod 2n), we obtain that

2
S) = a" Tttt e, Sy = (ar+1T-ar+"T)[ ], Sz = a" M
-3 e
are all product-one sequences, whence S = Sl-Sg-S:[,)n ], contradicting that S €

A(G). If o* € supp(T3), then Ts = (a™Ti7 . amFnr) 1l (ar2F27 . qr2tnr)
for some 7,72 € [0,2n — 1] (as argued in similar cases). Since z = 1+ n
(mod 2n), we obtain that

r1+n7_.ar1+17_.

Sy = a2 tra P 2rg g1 e e and S, = a «@

are both product-one sequences, whence S = 57 - Sgl_Q], contradicting that

S e A(G).
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Suppose that 7' - Ty - T = ol*»=2 and 2 = 2 + n (mod 2n). If |Ty| > 1,
then

T

27747472"1—'1‘]
2 . a®r

2n—4—2|Tq |
1.

(a . a_l)[m” and al?t r-al

are both product-one sequences, contradicting that S € A(G). Thus |T1| = 0,

and we obtain that T3 = (a" ™7 - a™t"7) ) for some r € [0,2n — 1] (as argued
in similar cases). Since z = 2+ n (mod 2n), we obtain that

2
S1 =711 (of“r . ar+"7)[ I and Sy = "o o

are both product-one sequences, whence S = 57 - Sgl_Q], contradicting that
S e A(G). O

5. Unions of sets of lengths

In this section, we study sets of lengths and their unions in the monoid B(G)
of product-one sequences over dihedral and dicyclic groups. To do so, we briefly
gather the required concepts in the setting of atomic monoids.

Let H be an atomic monoid, this means a commutative, cancellative semi-
group with unit element such that every non-unit element can be written as a
finite product of atoms. If a = uy - ... ux € H, where k € N and uq, ..., ug
are atoms of H, then k is called the length of the factorization and

L(a) = {k € N|a has a factorization of length k} C N
is the set of lengths of a. As usual we set L(a) = {0} if a is invertible, and then
L(H) = {La)|a € H)
denotes the system of sets of lengths of H. If k € N and H is not a group, then

UH) = |J LcN
keL,LeL(H)

denotes the union of sets of lengths containing k. For every k € N, pp(H) =
supUy(H) is the kth-elasticity of H, and we denote by A\, (H) = infU,(H).

Moreover,
H H
p(H) = sup MMGN = 1imM
k k—o0 k

is the elasticity of H. Unions of sets of lengths have been studied in settings
ranging from power monoids to Mori domains and to local quaternion orders
(for a sample of recent results we refer to [1,11,12,19,32]).

Let G be a finite group. The monoid B(G) of product-one sequences over
G is a finitely generated reduced monoid, and it is a Krull monoid if and only
if G is abelian ([27, Proposition 3.4]). If G is abelian, then most features
of the arithmetic of a general Krull monoid having class group G and prime
divisors in all classes can be studied in the monoid B(G). For this reason,
B(G) has received extensive investigations (see [31] for a survey). If G is non-
abelian, then B(G) fails to be Krull but it is still a C-monoid ([8, Theorem
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3.2]). Thus it shares all arithmetical finiteness properties valid for abstract
C-monoids ([18,20]). Investigations aiming at precise results for arithmetical
invariants were started in [27,28]. We continue them in this section and obtain
explicit upper and lower bounds in the case of dihedral and dicyclic groups. As
usual, we set

£(C) = L(BG)). U(G) = Uk(B(G)). pr(C) = pi(B(G)). plG) = p(B(C))

for every k € N. It is well-known that U, (G) = {k} for all £ € N if and
only if |G| < 2. Thus, whenever convenient, we will assume that |G| > 3. Tt
is already known that the sets Uy (G) are intervals ([27, Theorem 5.5.1]). Our
study of the minima A, (G) runs along the lines of what was done in the abelian
case ([16, Section 3.1]). The study of the maxima py(G) substantially uses the
results of Section 4.

Lemma 5.1. Let G be a finite group with |G| > 3 and let k € N.
1. pr(G) < %(G) and por(G) = kD(G). In particular, p(G) = @.
2. If j,1 € Ny such that ID(G) +j > 1, then
2 .
204 —— < A (G) < 21 .
+ DG = n(@)+i(G) < 20+
In particular, \ip(c)(G) = 21 for every l € N.

Proof. 1. [27, Proposition 5.6].
2. Let j,1 € Ny such that ID(G) + j > 1. Note that there is some L € L(G)
with k, \p(G) € L, and it follows that

E<maxL < p(G)min L = p(G)\¢(G).
Hence we obtain that
2j _ .
20+ D(G) = p(G)"'(ID(G) +j) < NpG)+j-
Since 2 < D(G), it follows by 1. that
A1 (G) < 20+ 7 < ID(G) +j < palG) +pi(G) < patj(G),

whence ID(G) + j € Ua4,(G) (by [27, Theorem 5.5.1]), equivalently 2 + j €
Uip(c)+;(G). Therefore

27 .
204+ ——— < A\ < 2] .
+ D(G) ~ "PE+ = +J
Ifj = 0, then AlD(G)(G) = 2. (I

Lemma 5.2. Let G be a finite group with |G| > 3. For every j € N>o, the
following statements are equivalent:

(a) There exists some L € L(G) with {2,j} C L.

(b) j < D(C).
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Proof. (a) = (b) If L € £(G) with {2,7} C L, then Lemma 5.1.1 implies that
j <supL < p2(G) = D(G).

(b) = (a) If § < D(G), then there exists some U € A(G) with |U| = £ > j,
say U=g1+...-g¢with g192--- g =1¢. Then V=91 ...+ gj_1-(g9j--g¢) €
A(G), and {2,5} C L(V - V1), O

Proposition 5.3. Let G be a finite group with |G| > 3. For every |l € Ny, we
have

21 for =0,

Aip@)+j(G) = 20+ 1 forj €1, pui1(G) - ID(G)],
2042 forj € [pas1(G) —ID(G) + 1,D(G) — 1],

provided that ID(G) +j > 1.

Proof. Let | € Ny and j € [0,D(G) — 1] such that ID(G) +j > 1. For j = 0,
the assertion follows from Lemma 5.1.2. Let j € [1,D(G) — 1]. Then Lemma
5.1.2 implies that
2j ID(G)+3j .

21 = < A (G) < 2 .
For the j = 1 case, note that pap41(G) > p2e(G) +1 = ¢D(G) + 1,80 j =1
forces the second of the three cases to hold, and thus we may assume that
j > 2. Then Lemma 5.2 implies that {2, j} C L(U) for some U € B(G), whence
Aj(G) = 2. Thus we have

Aip@)+i(G) < Aipe)(G) +X\(G) = 2042,

and hence A\jp(g)+,(G) € [21 + 1,21 4 2].

If j € [2,p241(G) —ID(G)], then I > 1, and by [27, Theorem 5.5.1], we
obtain that ID(G)+j € Ua41(G), equivalently 21 +1 € Up(q)+,(G). Therefore
)\lD(G)+j (G) < 20 + 1 and thus )‘lD(G)+j =2[+1.

If j > paut1(G) — ID(G), then ID(G) + j > pau+1(G), and by [27, Theorem
5.5.1], we obtain that ID(G) + j ¢ Uo41(G), and that Nipay4;(G) > 20 + 1.
Therefore A\ip(gy+;(G) = 21 + 2. O

Theorem 5.4. Let G be a dihedral group of order 2n, where n € N>3 is odd.
Then, for every k € N>o and every | € Ny, we have Uy (G) = [M(G), p(G)],

A+j forjelo1],

20+2 forj>2andl =0,

2041 forje[2,n] andl > 1,

2042 forjen+1,2n—1] andl > 1,

pr(G) =kn, and Aany;(G) =

provided that 2ln 4+ 7 > 1.

Proof. We obtain that U, (G) = [A(Q), pr(G)] by [27, Theorem 5.5.1]. We
prove the assertion on pi(G), and then the assertion on Aoy, ;(G) follows from
Proposition 5.3.
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Let k € N. If k is even, the assertion follows from Lemma 5.1.1. For odd k,
it is sufficient to show that p3(G) > 3n. Indeed Lemma 5.1.1 implies that

% + 3)2
St 2kn < p3(C) + por(G) < parss(G) < ZEA3)2N

< < 5 = 3n+2kn,

and hence the assertion follows.
Since n € N>3 is odd, it follows by letting G = («, 7) that

U= (an)M.7 v = (a2 (o) and W = (o?r) . 7]
are the minimal product-one sequences of length D(G) (Theorem 4.1). Thus
we obtain that {3,3n} C L(U - V - W), whence p3(G) > 3n. O

Theorem 5.5. Let G be either a dihedral group Do, of order 2n or a dicyclic
group Qum, of order 4m, where n € N>y is even and m € N>o. Then, for every
k € N, we have

(a) (b) D(G
ED(G)+2 < pop+1(G) < kD(G)+ (T) —1.

In particular, if G is isomorphic to Dg or to Qs, then pop+1(G) = kD(G) + 2
for every k € N.

Proof. 1. Let n € N4 be even, and G = {(a,7|a" = 72 = 1g and Ta =

a~ 7). To show the inequality (a), we take three minimal product-one se-

quences
U = a[n+%_2].7.ag77 V = (a_l)
of length |U| = |V| = D(G) (Theorem 4.2) and |W| = 4. Then it follows by
{3,D(G) +2} C L(U -V - W) that D(G) + 2 < p3(G), whence we obtain that,
for every k > 2,
KD(G) +2 = (k= 1)D(G) + (D(G) +2) < pa(G) + ps(G) < pasa(G).
To show the inequality (b), we assume to the contrary that pori1(G) =
LMJ. Then there exist Uy, ..., Usg+1 € A(G) with |Uy| > -+ > |Usg41]

2
such that p = por11(G) € L(U1 S U2k+1). Hence we have that

UpeoooUsipr = Wyeo oW,
where Wi, ..., W, € A(G) with |Wy| < - < |W,|. Let Hy = (a) \ {lg,a?}.
For every g € Hy and every sequence S € F(G), we define
Pg(S) = vg(S) = vg-1(95).

Then, for every g € Hy, we have |1)4(T)| < |T'| and [¢py(W)| = 0 for sequences
T € F(G) and W € A(G) with [W| = 2.
CASE 1. |Uy| =+ = |Ugg+1] = D(G).

Then we obtain that either |Wi| = --- = |[W,| = 2, or else |[W;| = --- =

|[W,_1] =2 and |W,| = 3. Since 2k + 1 is odd, it follows by Theorem 4.2 that
there exists go € Hy with ord(go) = n such that the absolute value g, (U -

n+%—2 n z z
[n+3 ]'047'~042+1T, W = ra?rara2tir
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... - Usky1)| is ¢(3 — 2) for some ¢ € N. Since 14, (W;) =0 for all i € [1, p— 1],
we obtain that

3n
42 (5 -2) < Wau(U1- - Uner)

= Wgo(Wl Wp)|
< g (Wi oo s W)+ [1hgo (W) <3,

a contradiction.

CASE 2. |U1| == |U2k| = D(G) and |U2k+1| = D(G) — 1.
Then we obtain that [W;| =--- = |W,| = 2 and hence

Go(Uy « ... - Usi) + g (Unig1) = g (U - ... » Uspy1) = og(Wy - ...« W,) =0

for every g € Hy. Let Usgy1 = T1+To, where T} € .F((a)) and T, € ]-'(G\(oz)).
If |Ty| = 0, then it follows by Proposition 3.2 that 22 — 1 = |Us41| = [T2| < n,
contradicting that n > 4. If |T| = 0, then D((e)) = n ensures that 3* — 1 =
|Usg+1| = |T1| < n, again a contradiction. Thus T; and T, are both non-
trivial sequences, and we show that they are product-one sequences to get a
contradiction.

First, we prove that T is a product-one sequence. Note that 1, (Usgy1) =
Yg(Th) for all g € Hy. If there exists go € Hp such that 14, (71) # 0, then
[go (Ut + ...« Uak)| = [thgo(T1)| > 1. Thus Theorem 4.2 ensures that |, (U +
...+ Usp)| = t(32 — 2) for some t € N. Since |T| > 2, it follows that

M1 = U] = D]+ T3] > 24 o (T)] = 24+8(20 —2) = 2,
a contradiction. Thus tg(Usxt1) = ¢4(Th) = 0 for all g € Hy. Since a? €
Z(G), we have v 2 (U) < 1 for any U € A(G) with [U| > 3. Hence Theorem
4.2 ensures that a* ¢ supp(U;) for all i € [1,2k], and hence voaUp-...-
Usg41) = v _n (Uzk41) < 1. Since v, 2 (Wh«...-W,) must be even, we obtain

o2

v, 3 (Uzk+1) = 0, and therefore T} = H;e[l,\T1|/2] (gi-g7") € B(Hy).
Next, we show that T5 is a product-one sequence. Let Uy -...-Us, = 21+ Zs,

where Z; € F((a)) and Z € F(G \ (@)). Then Theorem 4.2 implies that
Zo = Vi o Vo,

where for each i € [1,2k], V; = a”it - a2 "7 for some 7; € [0,n — 1]. Choose
I C [1,2k] to be maximal such that [7.; V; is a product of minimal product-
one sequences of length 2. Then both |I] and |[1,2k] \ I| are even, and thus
Zh = H;e[l,%}\l Vj; is a product-one sequence.

Since 17 - Z; is a product of minimal product-one sequences of length 2,
it follows that T5 - Z5 is also a product of minimal product-one sequences of
length 2. Let T3 be a subsequence of T obtained by deleting all minimal
product-one subsequences of length 2. Then Tj - Z) is again a product of
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minimal product-one sequences of length 2. Since Ty and Z) are both square-
free sequences, we obtain that T3 = Z} is a product-one sequence, whence
T, = (T, - (1)) - T} € B(G).

2. Let m > 2, and G = {a,7|a®™ = 1g, 72 = o™, and 7a = a 7). To
show the inequality (a), we take three minimal product-one sequences

U = a[3m—2] . 7_[2]’ vV = (a—l)[Sm—Q} . (OéT)[Q] , W = (amT . Oém—i—17_)[2]
of length |U| = |V| = D(G) (Theorem 4.3) and |W| = 4. Then it follows by
{3,D(G) +2} C L(U -V - W) that D(G) + 2 < p3(G), whence we obtain that,
for every k > 2,
kD(G) +2 = (k—1)D(G) + (D(G) +2) < pax—2(G) + p3(G) < p2r41(G) .

To show the inequality (b), we assume to the contrary that pori1(G) =

LWJ Then there exist Uy, ..., Usgt1 € A(G) with |Uq| > -+ > |Usg41]

such that p = par11(G) € L(U1 S U2k+1). Hence we have that
Upeooo o U = Wie oo W,

where Wy,..., W, € A(G) with [W;]| < --- < |W,|. Let Hy = (o) \ {1g,a™}.
For every g € Hy and every sequence S € F(G), we define
Bg(8) = ¥(8) = vy1 (5).

Then, for every g € Hy, we have |¢4(T')| < |T| and |¢,(W)| = 0 for sequences
T € F(G) and W € A(G) with |W| = 2.
CASE 1. |Uy| = -+ = |Uak+1| = D(G).

Then we obtain that either |Wi| = --- = |[W,| = 2, or else |[W;| = --- =
[W,—1| = 2 and |W,| = 3. Since 2k + 1 is odd, it follows by Theorem 4.3
that there exists go € Hy with ord(go) = 2m such that the absolute value

[thgo (Ut + ...« Uagy1)] is t(3m — 2) for some ¢t € N. Since ¢4, (W;) = 0 for all
i € [1, p — 1], we obtain that

4 S 3m —2 S |¢90(U1 c... U2k+1)|
= |thge (W ... W)
< W’go(Wl et Wp71)| + |7/’go(Wp)‘ < 3,
a contradiction.
CASE 2. |U1| == |U2k| = D(G) and |U2k+1| = D(G) — 1.
Then we obtain that |[W;| =--- = |W,| = 2, and hence
wg(Ul cLLLe ng) + wg(UQk-l-l) = wg(Ul cLLLe U2k+1) = ¢9(Wl cLLLe Wp) =0

for every g € Hy. Let Uggyr1 = T4 - To, where T} € f((a)) and Ty € .F(G\(a>).
If |T5| = 0, then D({)) = 2m ensures that 3m — 1 = [Usgy1| = [T1] < 2m, a
contradiction to m > 2. Thus T5 is a non-trivial sequence. We show that T}
and Ty are both product-one sequences, and it will be shown that To ¢ A(G)
when |T3| = 0.
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First, we prove that T} is a product-one sequence. Note that 1y(Usiq1) =
y(Th) for all g € Hy. If there exists go € Hp such that 1y, (71) # 0, then
[thgo (Ur - ...« Uak)| = |1hg, (Th)| > 1. Thus Theorem 4.3 ensures that |4, (U7 -
..+ Ug)| = t(3m — 2) for some ¢t € N. Since |T3| > 2, it follows that

3m —1 = |[Uspta| = [To] +[T1] = 2+ |thg,(T1)] = 2+ t(3m —2) > 3m,

a contradiction. Thus ¥g(Usgt1) = ¥g(Th) = 0 for all g € Hp. Since a™ €
Z(G), we have vom (U) < 1 for any U € A(G) with |U| > 3. Hence Theorem
4.3 ensures that o™ ¢ supp(U;) for all ¢ € [1,2k], and thus vom(Uy -
Usi41) = Vam (Uaky1) < 1. Since vom (Wy « ...« W,) must be even, we obtain
Vam (U2i41) = 0, and therefore T} = H;€[17|T1\/2] (gi -9, ") € B(Hp).

Next, we show that T5 is a product-one sequence, which is not a minimal

product-one sequence when |T1| = 0. Let Uy - ... Uy, = Zy - Zo, where
Zy € F({a)) and Z € F(G\ (@)). Then Theorem 4.3 implies that

Zy = Vi - Vo,

where for each i € [1,2k], V; = (a"7)P? for some r; € [0,2m — 1]. Choose
I C [1,2k] to be maximal such that [J7.; V; is a product of minimal product-
one sequences of length 2. Then both |I| and |[1,2k] \ I| are even, and thus
Zy = [Tiep,onps Vi 18 a product-one sequence, which is in fact a product of
product-one subsequences of length at most 4.

Since T3 - Z7 is a product of minimal product-one sequences of length 2, it
follows that T5 - Zs is also a product of minimal product-one sequences of length
2. Let T4 be a subsequence of T obtained by deleting all minimal product-
one subsequences of length 2. Then T - Z) is again a product of minimal
product-one sequences of length 2. Since both T4 and Z) have no product-one
subsequences of length 2 and o™ € Z(G), it follows that 1¢ € n(Z5) = n(13),
whence Ty = (T - (T3)!=Y) - T € B(G). To conclude the proof, we may assume
that |T1| = 0. Then Usg+1 = Th, and it follows that either that T is trivial,
or that Usgi1 = T4. In the former case, Usgyy is a product of product-one
subsequences of length 4 (as this is the case for Z) with the terms of Z} and
T} pairing up), so Usgt1 € A(G) forces 3m — 1 = |Usg11] < 4, contradicting
that m > 2. In the latter case, Usk41 is a product of product-one sequences of
length 2 by definition of T3, whence Usg41 € A(G) forces 3m—1 = |Ugg11| < 2,
again a contradiction. O
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