ON MINIMAL PRODUCT-ONE SEQUENCES OF MAXIMAL LENGTH OVER DIHEDRAL AND DICYCLIC GROUPS

Jun Seok Oh and Qinghai Zhong

Abstract

Let G be a finite group. By a sequence over G, we mean a finite unordered sequence of terms from G, where repetition is allowed, and we say that it is a product-one sequence if its terms can be ordered such that their product equals the identity element of G. The large Davenport constant $\mathrm{D}(G)$ is the maximal length of a minimal product-one sequence, that is, a product-one sequence which cannot be factored into two nontrivial product-one subsequences. We provide explicit characterizations of all minimal product-one sequences of length $\mathrm{D}(G)$ over dihedral and dicyclic groups. Based on these characterizations we study the unions of sets of lengths of the monoid of product-one sequences over these groups.

1. Introduction

Let G be a finite group. A sequence S over G means a finite sequence of terms from G which is unordered, repetition of terms allowed. We say that S is a product-one sequence if its terms can be ordered so that their product equals the identity element of the group. The small Davenport constant $\mathrm{d}(G)$ is the maximal integer ℓ such that there is a sequence of length ℓ which has no non-trivial product-one subsequence. The large Davenport constant $\mathrm{D}(G)$ is the maximal length of a minimal product-one sequence (this is a productone sequence which cannot be factored into two non-trivial product-one subsequences). We have $1+\mathrm{d}(G) \leq \mathrm{D}(G)$ and equality holds if G is abelian. The study of the Davenport constant of finite abelian groups has been a central topic in zero-sum theory since the 1960s (see [13] for a survey). Both the direct problem, asking for the precise value of the Davenport constant in terms of the group invariants, as well as the associated inverse problem, asking for the structure of extremal sequences, have received wide attention in the literature. We refer to $[4,14,15,21-23,29,30]$ for progress with respect to the direct and

[^0]to the inverse problem. Much of this research was stimulated by and applied to factorization theory and we refer to $[16,18]$ for more information on this interplay.

Applications to invariant theory (in particular, the relationship of the small and large Davenport constants with the Noether number, see [5-9,26]) pushed forward the study of the Davenport constants for finite non-abelian groups. Geroldinger and Grynkiewicz ($[17,24]$) studied the small and the large Davenport constant of non-abelian groups and derived their precise values for groups having a cyclic index 2 subgroup. Brochero Martínez and Ribas ($[2,3]$) determined, among others, the structure of product-one free sequences of length $\mathrm{d}(G)$ over dihedral and dicyclic groups.

In this paper we establish a characterization of the structure of minimal product-one sequences of length $\mathrm{D}(G)$ over dihedral and dicyclic groups (Theorems 4.1, 4.2, and 4.3). It turns out that this problem is quite different from the study of product-one free sequence done by Brochero Martínez and Ribas. The minimal product-one sequences over G are the atoms (irreducible elements) of the monoid $\mathcal{B}(G)$ of all product-one sequences over G. Algebraic and arithmetic properties of $\mathcal{B}(G)$ were recently studied in [27,28]. Based on our characterization results of minimal product-one sequences of length $\mathrm{D}(G)$ we give a description of all unions of sets of lengths of $\mathcal{B}(G)$ (Theorems 5.4 and 5.5).

We proceed as follows. In Section 2, we fix our notation and gather the required tools. In Section 3, we study the structure of minimal product-one sequences fulfilling certain requirements on their length and their support (Propositions 3.2 and 3.3). Based on these preparatory results, we establish an explicit characterization of all minimal product-one sequences having length $\mathrm{D}(G)$ for dihedral groups (Theorems 4.1 and 4.2) and for dicyclic groups (Theorem 4.3). Our results on unions of sets of lengths are given in Section 5.

2. Preliminaries

We denote by \mathbb{N} the set of positive integers and we set $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For each $k \in \mathbb{N}$, we also denote by $\mathbb{N}_{\geq k}$ the set of positive integers greater than or equal to k. For integers $a, b \in \mathbb{Z},[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$ is the discrete interval.
Groups. Let G be a multiplicatively written finite group with identity element 1_{G}. For an element $g \in G$, we denote by $\operatorname{ord}(g) \in \mathbb{N}$ the order of g, and for subsets $A, B \subset G$, we set

$$
A B=\{a b \mid a \in A \text { and } b \in B\} \quad \text { and } \quad g A=\{g a \mid a \in A\}
$$

If $G_{0} \subset G$ is a non-empty subset, then we denote by $\left\langle G_{0}\right\rangle \subset G$ the subgroup generated by G_{0}, and by $\mathrm{H}\left(G_{0}\right)=\left\{g \in G \mid g G_{0}=G_{0}\right\}$ the left stabilizer of G_{0}. Then $\mathrm{H}\left(G_{0}\right) \subset G$ is a subgroup, and G_{0} is a union of right $\mathrm{H}\left(G_{0}\right)$-cosets. Of course, if G is abelian, then we do not need to differentiate between left
and right stabilizers and simply speak of the stabilizer of G_{0}, and when G is written additively, we have that $\mathrm{H}\left(G_{0}\right)=\left\{g \in G \mid g+G_{0}=G_{0}\right\}$. Furthermore, for every $n \in \mathbb{N}$ and for a subgroup $H \subset G$, we denote by

- $[G: H]$ the index of H in G,
- $\phi_{H}: G \rightarrow G / H$ the canonical epimorphism if $H \subset G$ is normal,
- C_{n} an (additively written) cyclic group of order n,
- $D_{2 n}$ a dihedral group of order $2 n$, and by
- $Q_{4 n}$ a dicyclic group of order $4 n$.

Sequences over groups. Let G be a finite group with identity element 1_{G} and $G_{0} \subset G$ a subset. The elements of the free abelian monoid $\mathcal{F}\left(G_{0}\right)$ will be called sequences over G_{0}. This terminology goes back to Combinatorial Number Theory. Indeed, a sequence over G_{0} can be viewed as a finite unordered sequence of terms from G_{0}, where the repetition of elements is allowed. We briefly discuss our notation which follows the monograph [25, Chapter 10.1]. In order to avoid confusion between multiplication in G and multiplication in $\mathcal{F}\left(G_{0}\right)$, we denote multiplication in $\mathcal{F}\left(G_{0}\right)$ by the boldsymbol \cdot and we use brackets for all exponentiation in $\mathcal{F}\left(G_{0}\right)$. In particular, a sequence $S \in \mathcal{F}\left(G_{0}\right)$ has the form

$$
\begin{equation*}
S=g_{1} \cdot \ldots \cdot g_{\ell}=\prod_{i \in[1, \ell]}^{\bullet} g_{i} \in \mathcal{F}\left(G_{0}\right) \tag{2.1}
\end{equation*}
$$

where $g_{1}, \ldots, g_{\ell} \in G_{0}$ are the terms of S. For $g \in G_{0}$,

- $\mathrm{v}_{g}(S)=\left|\left\{i \in[1, \ell] \mid g_{i}=g\right\}\right|$ denotes the multiplicity of g in S,
- $\operatorname{supp}(S)=\left\{g \in G_{0} \mid \mathrm{v}_{g}(S)>0\right\}$ denotes the support of S, and
- $\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S) \mid g \in G_{0}\right\}$ denotes the maximal multiplicity of S.

A subsequence T of S is a divisor of S in $\mathcal{F}\left(G_{0}\right)$ and we write $T \mid S$. For a subset $H \subset G_{0}$, we denote by S_{H} the subsequence of S consisting of all terms from H. Furthermore, $T \mid S$ if and only if $\mathrm{v}_{g}(T) \leq \mathrm{v}_{g}(S)$ for all $g \in G_{0}$, and in such case, $S \cdot T^{[-1]}$ denotes the subsequence of S obtained by removing the terms of T from S so that $\mathrm{v}_{g}\left(S \cdot T^{[-1]}\right)=\mathrm{v}_{g}(S)-\mathrm{v}_{g}(T)$ for all $g \in G_{0}$. On the other hand, we set $S^{-1}=g_{1}^{-1} \cdot \ldots \cdot g_{\ell}^{-1}$ to be the sequence obtained by taking elementwise inverse from S.

Moreover, if $S_{1}, S_{2} \in \mathcal{F}\left(G_{0}\right)$ and $g_{1}, g_{2} \in G_{0}$, then $S_{1} \cdot S_{2} \in \mathcal{F}\left(G_{0}\right)$ has length $\left|S_{1}\right|+\left|S_{2}\right|, S_{1} \cdot g_{1} \in \mathcal{F}\left(G_{0}\right)$ has length $\left|S_{1}\right|+1, g_{1} g_{2} \in G$ is an element of G, but $g_{1} \cdot g_{2} \in \mathcal{F}\left(G_{0}\right)$ is a sequence of length 2 . If $g \in G_{0}, T \in \mathcal{F}\left(G_{0}\right)$, and $k \in \mathbb{N}_{0}$, then

$$
g^{[k]}=\underbrace{g \cdot \ldots \cdot g}_{k} \in \mathcal{F}\left(G_{0}\right) \quad \text { and } \quad T^{[k]}=\underbrace{T \cdot \ldots \cdot T}_{k} \in \mathcal{F}\left(G_{0}\right) .
$$

Let $S \in \mathcal{F}\left(G_{0}\right)$ be a sequence as in (2.1). When G is written multiplicatively, we denote by

$$
\pi(S)=\left\{g_{\tau(1)} \cdots g_{\tau(\ell)} \in G \mid \tau \text { a permutation of }[1, \ell]\right\} \subset G
$$

the set of products of S, and it can easily be seen that $\pi(S)$ is contained in a G^{\prime}-coset, where G^{\prime} is the commutator subgroup of G. Note that $|S|=0$ if and only if $S=1_{\mathcal{F}(G)}$, and in that case we use the convention that $\pi(S)=\left\{1_{G}\right\}$. When G is written additively with commutative operation, we likewise define

$$
\sigma(S)=g_{1}+\cdots+g_{\ell} \in G
$$

to be the sum of S. More generally, for any $n \in \mathbb{N}_{0}$, the n-sums and n-products of S are respectively denoted by
$\Sigma_{n}(S)=\{\sigma(T)|T| S$ and $|T|=n\} \subset G \quad$ and $\quad \Pi_{n}(S)=\bigcup_{\substack{T|S\\| T \mid=n}} \pi(T) \subset G$,
and the subsequence sums and subsequence products of S are respectively denoted by

$$
\Sigma(S)=\bigcup_{n \geq 1} \Sigma_{n}(S) \subset G \quad \text { and } \quad \Pi(S)=\bigcup_{n \geq 1} \Pi_{n}(S) \subset G
$$

The sequence S is called

- a product-one sequence if $1_{G} \in \pi(S)$,
- product-one free if $1_{G} \notin \Pi(S)$,
- square-free if $\mathrm{h}(S) \leq 1$.

If $S=g_{1} \cdot \ldots \cdot g_{\ell} \in \mathcal{B}(G)$ is a product-one sequence with $1_{G}=g_{1} \cdots g_{\ell}$, then $1_{G}=g_{i} \cdots g_{\ell} g_{1} \cdots g_{i-1}$ for every $i \in[1, \ell]$. Every map of groups $\theta: G \rightarrow H$ extends to a monoid homomorphism $\theta: \mathcal{F}(G) \rightarrow \mathcal{F}(H)$, where $\theta(S)=\theta\left(g_{1}\right)$. $\ldots \cdot \theta\left(g_{\ell}\right)$. If θ is a group homomorphism, then $\theta(S)$ is a product-one sequence if and only if $\pi(S) \cap \operatorname{ker}(\theta) \neq \emptyset$. We denote by

$$
\mathcal{B}\left(G_{0}\right)=\left\{S \in \mathcal{F}\left(G_{0}\right) \mid 1_{G} \in \pi(S)\right\}
$$

the set of all product-one sequences over G_{0}, and clearly $\mathcal{B}\left(G_{0}\right) \subset \mathcal{F}\left(G_{0}\right)$ is a submonoid. We denote by $\mathcal{A}\left(G_{0}\right)$ the set of irreducible elements of $\mathcal{B}\left(G_{0}\right)$ which, in other words, is the set of minimal product-one sequences over G_{0}. Moreover,

$$
\mathrm{D}\left(G_{0}\right)=\sup \left\{|S| \mid S \in \mathcal{A}\left(G_{0}\right)\right\} \in \mathbb{N} \cup\{\infty\}
$$

is the large Davenport constant of G_{0}, and

$$
\mathrm{d}\left(G_{0}\right)=\sup \left\{|S| \mid S \in \mathcal{F}\left(G_{0}\right) \text { is product-one free }\right\} \in \mathbb{N}_{0} \cup\{\infty\}
$$

is the small Davenport constant of G_{0}. It is well known that $\mathrm{d}(G)+1 \leq$ $\mathrm{D}(G) \leq|G|$, with equality in the first bound when G is abelian, and equality in the second bound when G is cyclic ([17, Lemma 2.4]). Moreover, Geroldinger and Grynkiewicz provide the precise value of the Davenport constants for noncyclic groups having a cyclic index 2 subgroups (see [17, 24]), whence we have that, for every $n \in \mathbb{N}_{\geq 2}$,

$$
\mathrm{D}\left(Q_{4 n}\right)=3 n \quad \text { and } \quad \mathrm{D}\left(D_{2 n}\right)=\left\{\begin{array}{cl}
2 n & \text { if } n \geq 3 \text { is odd, } \\
\frac{3 n}{2} & \text { if } n \geq 4 \text { is even. }
\end{array}\right.
$$

Ordered sequences over groups. These are an important tool used to study (unordered) sequences over non-abelian groups. Indeed, it is quite useful to have related notation for sequences in which the order of terms matters. Thus, for a subset $G_{0} \subset G$, we denote by $\mathcal{F}^{*}\left(G_{0}\right)=\left(\mathcal{F}^{*}\left(G_{0}\right), \cdot\right)$ the free (non-abelian) monoid with basis G_{0}, whose elements will be called the ordered sequences over G_{0}.

Taking an ordered sequence in $\mathcal{F}^{*}\left(G_{0}\right)$ and considering all possible permutations of its terms gives rise to a natural equivalence class in $\mathcal{F}^{*}\left(G_{0}\right)$, yielding a natural map

$$
[\cdot]: \mathcal{F}^{*}\left(G_{0}\right) \quad \rightarrow \quad \mathcal{F}\left(G_{0}\right)
$$

given by abelianizing the sequence product in $\mathcal{F}^{*}\left(G_{0}\right)$. For any sequence $S \in$ $\mathcal{F}\left(G_{0}\right)$, we say that an ordered sequence $S^{*} \in \mathcal{F}^{*}\left(G_{0}\right)$ with $\left[S^{*}\right]=S$ is an ordering of the sequence $S \in \mathcal{F}\left(G_{0}\right)$.

All notation and conventions for sequences extend naturally to ordered sequences. We sometimes associate an (unordered) sequence S with a fixed (ordered) sequence having the same terms, also denoted by S. While somewhat informal, this does not give rise to confusion, and will improve the readability of some of the arguments.

For an ordered sequence $S=g_{1} \cdot \ldots \cdot g_{\ell} \in \mathcal{F}^{*}(G)$, we denote by $\pi^{*}: \mathcal{F}^{*}(G) \rightarrow$ G the unique homomorphism that maps an ordered sequence onto its product in G, so

$$
\pi^{*}(S)=g_{1} \cdots g_{\ell} \in G
$$

If G is a multiplicatively written abelian group, then for every sequence $S \in$ $\mathcal{F}(G)$, we always use $\pi^{*}(S) \in G$ to be the unique product, and $\Pi(S)=$ $\bigcup\left\{\pi^{*}(T) \mid T\right.$ divides S and $\left.|T| \geq 1\right\} \subset G$.

For the proof of our main results, the structure of product-one free sequences over cyclic groups plays a crucial role. Thus we gather some necessary lemmas regarding sequences over cyclic groups. Let G be an additively written finite cyclic group. A sequence $S \in \mathcal{F}(G)$ is called smooth (more precisely, g-smooth) if $S=\left(n_{1} g\right) \cdot \ldots \cdot\left(n_{\ell} g\right)$, where $|S|=\ell \in \mathbb{N}, g \in G, 1=n_{1} \leq \cdots \leq n_{\ell}$, $m=n_{1}+\cdots+n_{\ell}<\operatorname{ord}(g)$, and $\Sigma(S)=\{g, 2 g, \ldots, m g\}$.

Lemma 2.1 ([16, Lemma 5.1.4]). Let G be an additively written cyclic group of order $|G|=n \geq 3, g \in G$, and $k, l, n_{1}, \ldots, n_{l} \in \mathbb{N}$ such that $l \geq \frac{k}{2}$ and $m=n_{1}+\cdots+n_{l}<k \leq \operatorname{ord}(g)$. If $1 \leq n_{1} \leq \cdots \leq n_{l}$ and $S=\left(n_{1} g\right) \cdot \cdots \cdot\left(n_{l} g\right)$, then $\sum(S)=\{g, 2 g, \ldots, m g\}$, and S is g-smooth.

Lemma 2.2. Let G be an additively written cyclic group of order $|G|=n \geq 3$ and $S \in \mathcal{F}(G)$ a product-one free sequence of length $|S| \geq \frac{n+1}{2}$. Then S is g-smooth for some $g \in G$ with $\operatorname{ord}(g)=n$, and for every $h \in \sum(S)$, there exists a subsequence $T \mid S$ such that $\sigma(T)=h$ and $g \mid T$. In particular,

1. if $|S|=n-1$, then $S=g^{[n-1]}$.
2. if $|S|=n-2$, then $S=(2 g) \cdot g^{[n-3]}$ or $S=g^{[n-2]}$.
3. if $n \geq 4$, then, for every subsequence $W \mid S$ with $|W| \geq \frac{n}{2}-1$, we obtain that $g \mid W$.

Proof. The first statement, that S is g-smooth for some $g \in G$ with $\operatorname{ord}(g)=n$, was found independently by Savchev-Chen and by Yuan, and we cite it in the formulation of [16, Theorem 5.1.8.1].

Suppose now that $S=\left(n_{1} g\right) \cdot \ldots \cdot\left(n_{\ell} g\right)$ with $1=n_{1} \leq \cdots \leq n_{\ell}$. Then $n_{2}+\cdots+n_{\ell}<n-1$ and $\ell-1 \geq \frac{n-1}{2}$. Applying Lemma 2.1 (with $k=n-1$), we obtain that $S \cdot g^{[-1]}$ is still g-smooth. Let $h \in \sum(S)=\left\{g, 2 g, \ldots,\left(n_{1}+\right.\right.$ $\left.\cdots+n_{\ell}\right) g$. If $h=g$, then we take $T=g$. If $h \neq g$, then since $S \cdot g^{[-1]}$ is g-smooth, it follows that $h+(-g) \in \sum\left(S \cdot g^{[-1]}\right)$, and hence there exists $W \mid S \cdot g^{[-1]}$ such that $\sigma(W)=h+(-g)$. Thus $W \cdot g$ is a subsequence of S with $\sigma(W \cdot g)=h$.

1. and 2. This follows immediately from the main statement.
2. Let $n \geq 4$, and $W \mid S$ be a subsequence with $|W| \geq \frac{n}{2}-1$. Then there exists a subset $I \subset[1, \ell]$ with $|I| \geq \frac{n}{2}-1$ such that $W=\prod_{i \in I}^{\bullet}\left(n_{i} g\right)$. Assume to the contrary that $n_{i} \geq 2$ for all $i \in I$. Then
$n-1 \geq \sum_{j=1}^{\ell} n_{j}=\sum_{i \in I} n_{i}+\sum_{j \in[1, \ell] \backslash I} n_{j} \geq 2|W|+(|S|-|W|)=|S|+|W| \geq n-\frac{1}{2}$, a contradiction.

3. On special sequences

In this section, we study the structure of minimal product-one sequences under certain additional conditions (Propositions 3.2 and 3.3). These results will be used substantially in the proofs of our main results in next section. We need the Theorem of DeVos-Goddyn-Mohar (see Theorem 13.1 of [25] and the proceeding special cases).
Lemma 3.1. Let G be a finite abelian group, $S \in \mathcal{F}(G)$ a sequence, $n \in[1,|S|]$, and $H=\mathrm{H}\left(\sum_{n}(S)\right)$. Then

$$
\left|\Sigma_{n}(S)\right| \geq\left(\sum_{g \in G / H} \min \left\{n, \mathrm{v}_{g}\left(\phi_{H}(S)\right)\right\}-n+1\right)|H|
$$

Let G be an additively (resp. multiplicatively) written finite abelian group. Then $2 G=\{2 g \mid g \in G\}$ (resp. $G^{2}=\left\{g^{2} \mid g \in G\right\}$). Likewise, given a sequence $S=g_{1} \cdot \ldots \cdot g_{\ell} \in \mathcal{F}(G)$, we set
(3.1) $2 S=2 g_{1} \cdot \ldots \cdot 2 g_{\ell} \in \mathcal{F}(2 G) \quad\left(\right.$ resp. $\left.S^{2}=g_{1}^{2} \cdot \ldots \cdot g_{\ell}^{2} \in \mathcal{F}\left(G^{2}\right)\right)$.

The Erdős-Ginzburg-Ziv constant $s(G)$ is the smallest integer $\ell \in \mathbb{N}$ such that every sequence $S \in \mathcal{F}(G)$ of length $|S| \geq \ell$ has a subsequence $T \in \mathcal{B}(G)$ of length $|T|=\exp (G)$. If $G=C_{n_{1}} \oplus C_{n_{2}}$ with $1 \leq n_{1} \mid n_{2}$, then $\mathrm{s}(G)=$
$2 n_{1}+2 n_{2}-3$ ([18, Theorem 5.8.3]). Results on groups of higher rank can be found in [10].
Proposition 3.2. Let $G=\langle\alpha, \tau| \alpha^{n}=\tau^{2}=1_{G}$ and $\left.\tau \alpha=\alpha^{-1} \tau\right\rangle$ be a dihedral group, where $n \in \mathbb{N}_{\geq 4}$ is even. Let $S \in \mathcal{F}(G)$ be a minimal productone sequence such that $|S| \geq n$ and $\operatorname{supp}(S) \subset G \backslash\langle\alpha\rangle$. Then S is a sequence of length $|S|=n$ having the following form:
(a) If $n=4$, then

$$
S=\tau \cdot \alpha \tau \cdot \alpha^{2} \tau \cdot \alpha^{3} \tau \quad \text { or } \quad S=\left(\alpha^{x} \tau\right)^{[2]} \cdot \alpha^{y} \tau \cdot \alpha^{y+2} \tau
$$

where $x, y \in[0,3]$ with $x \equiv y+1(\bmod 2)$.
(b) If $n \geq 6$, then

$$
S=\left(\alpha^{x} \tau\right)^{[v]} \cdot\left(\alpha^{\frac{n}{2}+x} \tau\right)^{\left[\frac{n}{2}-v\right]} \cdot\left(\alpha^{y} \tau\right)^{[w]} \cdot\left(\alpha^{\frac{n}{2}+y} \tau\right)^{\left[\frac{n}{2}-w\right]},
$$

where $x, y \in[0, n-1]$ such that $2 x \not \equiv 2 y(\bmod n)$ and $\operatorname{gcd}\left(x-y, \frac{n}{2}\right)=1$, and $v, w \in\left[0, \frac{n}{2}\right]$ such that $x-y \equiv v-w(\bmod 2)$.
In particular, there are no minimal product-one sequences S over G such that $S=S_{1} \cdot S_{2}$ for some $S_{1} \in \mathcal{F}(\langle\alpha\rangle)$ and $S_{2} \in \mathcal{F}(G \backslash\langle\alpha\rangle)$ of length $\left|S_{2}\right| \geq n+2$.

Proof. For every $x \in \mathbb{Z}$, we set $\bar{x}=x+n \mathbb{Z} \in \mathbb{Z} / n \mathbb{Z}$. Let $S=\prod_{i \in[1,|S|]}^{\bullet} \alpha^{x_{i}} \tau \in$ $\mathcal{A}(G)$ be of length $|S| \geq n$ with $\alpha^{x_{1}} \tau \cdots \alpha^{x_{|S|}} \tau=1_{G}$, where $x_{1}, \ldots, x_{|S|} \in$ [$0, n-1]$. Since $S \in \mathcal{A}(G)$, it follows that $|S|$ is even, and after renumbering if necessary, we set

$$
W=\overline{x_{1}} \cdot \ldots \cdot \overline{x_{|S|}}=W_{1} \cdot W_{2} \in \mathcal{F}(\mathbb{Z} / n \mathbb{Z}),
$$

where $W_{1}=\prod_{i \in[1,|S| / 2]}^{\bullet} \overline{x_{2 i-1}}$ and $W_{2}=\prod_{i \in[1,|S| / 2]}^{\bullet} \overline{x_{2 i}}$. Thus we have $\sigma\left(W_{1}\right)=$ $\sigma\left(W_{2}\right)$. If we shift the sequence W by \bar{y} for some $y \in \mathbb{Z}$, then the corresponding sequence $S^{\prime}=\prod_{i \in[1,|S|]}^{\bullet} \alpha^{x_{i}+y} \tau$ is still a minimal product-one sequence. If S^{\prime} has the asserted structure, then the same is true for S whence we may shift the sequence W whenever this is convenient. For every subsequence $U=\overline{y_{1}} \cdot \ldots \cdot \overline{y_{v}}$ of W, we denote by $\psi(U)=\alpha^{y_{1}} \tau \cdot \ldots \cdot \alpha^{y_{v}} \tau$ the corresponding subsequence of S.
A1. Let $U=U_{1} \cdot U_{2}$ be a subsequence of W such that $\left|U_{1}\right|=\left|U_{2}\right|$ and $\sigma\left(U_{1}\right)=$ $\sigma\left(U_{2}\right)$. Then $\psi(U)$ is a product-one sequence.

Proof of A1. Suppose that $U_{1}=\overline{y_{1}} \cdot \ldots \cdot \overline{y_{\left|U_{1}\right|}}$ and $U_{2}=\overline{z_{1}} \cdot \ldots \cdot \overline{z_{\left|U_{1}\right|}}$. Since $\sigma\left(U_{1}\right)=\sigma\left(U_{2}\right)$, it follows that

$$
\alpha^{y_{1}} \tau \alpha^{z_{1}} \tau \cdots \alpha^{y_{\left|U_{1}\right|}} \tau \alpha^{z_{\left|U_{1}\right|}} \tau=\alpha^{\left(y_{1}+\cdots+y_{\left|U_{1}\right|}\right)-\left(z_{1}+\cdots+z_{\left|U_{1}\right|}\right)}=1_{G}
$$

whence $\psi(U)$ is a product-one sequence.
If $\operatorname{supp}\left(W_{1}\right) \cap \operatorname{supp}\left(W_{2}\right) \neq \emptyset$, say $\overline{x_{1}}=\overline{x_{2}}$, then since $\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)$, it follows by A1 that $\psi\left(\overline{x_{1}} \cdot \overline{x_{2}}\right)$ and $\psi\left(W \cdot\left(\overline{x_{1}} \cdot \overline{x_{2}}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction. Therefore $\operatorname{supp}\left(W_{1}\right) \cap \operatorname{supp}\left(W_{2}\right)=\emptyset$.
CASE 1. $\mathrm{h}(W)=1$.

Since $|W| \geq n=|\mathbb{Z} / n \mathbb{Z}|$, it follows that $|W|=n$, and hence $\operatorname{supp}(W)=$ $\mathbb{Z} / n \mathbb{Z}$. Since $\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)$, it follows that

$$
2\left(x_{1}+x_{3}+\cdots+x_{|S|-1}\right) \equiv \frac{n(n-1)}{2} \quad(\bmod n), \quad \text { whence } 2 \left\lvert\, \frac{n}{2}(n-1)\right.
$$

Since n is even, we have $\operatorname{gcd}(2, n-1)=1$, which implies that $\frac{n}{2}$ is even. Note that, for any distinct two elements $x_{i_{1}}, x_{i_{3}} \in\left[1, \frac{n}{2}\right]$ with $x_{i_{2}}=x_{i_{1}}+\frac{n}{2}$ and $x_{i_{4}}=x_{i_{3}}+\frac{n}{2}$, the sequence $\prod_{k \in[1,4]}^{\bullet} \alpha^{x_{i_{k}}} \tau$ is a product-one sequence. Since $\operatorname{supp}(W)=\mathbb{Z} / n \mathbb{Z}$, we have that S is a product of $\frac{n}{4}$ product-one sequences of length 4. Since $S \in \mathcal{A}(G)$, we must have that $n=4$ and W is a sequence over $\mathbb{Z} / 4 \mathbb{Z}$ with $\mathrm{h}(W)=1$, whence $\psi(W)$ is the desired sequence for (a).

CASE 2. $\mathrm{h}(W) \geq 2$.
Then there exists $i \in[1,|W|]$, say $i=1$, such that $\mathrm{v}_{\overline{x_{1}}}(W) \geq 2$. In view of $\operatorname{supp}\left(W_{1}\right) \cap \operatorname{supp}\left(W_{2}\right)=\emptyset$, we may assume without loss of generality that $\overline{x_{1}}=\overline{x_{3}}$. Let

$$
W^{\prime}=\left(W_{1} \cdot\left(\overline{x_{1}} \cdot \overline{x_{3}}\right)^{[-1]}\right) \cdot W_{2} \quad \text { and } \quad \ell=\frac{\left|W^{\prime}\right|}{2}=\frac{|W|}{2}-1
$$

If $\sum_{\ell}\left(2 W^{\prime}\right)=2(\mathbb{Z} / n \mathbb{Z})$, it follows by $\sigma\left(W^{\prime}\right)=2 \sigma\left(W_{2}\right)-2 \overline{x_{1}} \in 2(\mathbb{Z} / n \mathbb{Z})$ that there exists a subsequence $T \mid W^{\prime}$ of length $|T|=\ell$ such that $2 \sigma(T)=$ $\sigma\left(W^{\prime}\right)$. Hence we infer that $\sigma(T)=\sigma\left(W^{\prime} \cdot T^{[-1]}\right)$ and $|T|=\left|W^{\prime} \cdot T^{[-1]}\right|$. Thus A1 implies that $\psi\left(\overline{x_{1}} \cdot \overline{x_{3}}\right)$ and $\psi\left(W^{\prime}\right)$ are both product-one sequences, a contradiction. Therefore $\sum_{\ell}\left(2 W^{\prime}\right) \subsetneq 2(\mathbb{Z} / n \mathbb{Z})$.

Let $H=\mathrm{H}\left(\sum_{\ell}\left(2 W^{\prime}\right)\right)$. By Lemma 3.1, we obtain that

$$
\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right| \geq\left(\sum_{g \in(2(\mathbb{Z} / n \mathbb{Z})) / H} \min \left\{\ell, \mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right)\right\}-\ell+1\right)|H|
$$

If $\mathrm{h}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \leq \ell$, then

$$
\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right| \geq\left(\left|2 W^{\prime}\right|-\ell+1\right)|H| \geq \frac{n}{2}=|2(\mathbb{Z} / n \mathbb{Z})|
$$

a contradiction. If there exist distinct $g_{1}, g_{2} \in(2(\mathbb{Z} / n \mathbb{Z})) / H$ such that $\ell<$ $\mathrm{v}_{g_{k}}\left(\phi_{H}\left(2 W^{\prime}\right)\right)$ for all $k \in[1,2]$, then

$$
\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right| \geq(2 \ell-\ell+1)|H| \geq \frac{n}{2}=|2(\mathbb{Z} / n \mathbb{Z})|
$$

a contradiction. Thus there exists only one element, say $g \in(2(\mathbb{Z} / n \mathbb{Z})) / H$, such that $\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right)>\ell$, which implies that

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq\left|2 W^{\prime}\right|+1-\frac{\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right|}{|H|} \geq\left|W^{\prime}\right|+2-\frac{n}{2|H|}
$$

A2. If H is trivial, then $|W|=n$ and $2 W_{2}=\left(2 \overline{x_{2}}\right)^{\left[\frac{n}{2}\right]}$ with $\mathrm{v}_{2 \overline{x_{2}}}\left(2 W_{1}\right)=0$.

Proof of A2. Suppose that H is trivial. Then there exists $g \in 2(\mathbb{Z} / n \mathbb{Z})$ such that $\mathrm{v}_{g}\left(2 W^{\prime}\right) \geq\left|W^{\prime}\right|+2-\frac{n}{2} \geq \ell+1$, and then we set $g=2 \bar{y}$ for some $y \in \mathbb{Z}$. If $\max \left\{\mathrm{v}_{2 \bar{y}}\left(2 W_{1}\right), \mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)\right\} \leq 1$, then $\ell+1 \leq \mathrm{v}_{2 \bar{y}}\left(2 W^{\prime}\right) \leq \mathrm{v}_{2 \bar{y}}\left(2 W_{1}\right)+$ $\mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right) \leq 2$, and thus $\ell \leq 1$. Since $\ell \geq 1$, we obtain that $\ell=1$, and it follows by $\ell=\frac{|W|}{2}-1$ that $|W|=n=4$ and $\left|W_{1}\right|=\left|W_{2}\right|=2$. Since $\max \left\{\mathrm{v}_{2 \bar{y}}\left(2 W_{1}\right), \mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)\right\} \leq 1$, we obtain that $2 \overline{x_{1}} \neq 2 \bar{y}$, and hence $2=$ $\ell+1 \leq \mathrm{v}_{2 \bar{y}}\left(2 W^{\prime}\right)=\mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right) \leq 1$, a contradiction. Thus we must have that $\max \left\{\mathrm{v}_{2 \bar{y}}\left(2 W_{1}\right), \mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)\right\} \geq 2$, and assert that $\min \left\{\mathrm{v}_{2 \bar{y}}\left(2 W_{1}\right), \mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)\right\}=$ 0 . Assume to the contrary that $\min \left\{\mathrm{v}_{2 \bar{y}}\left(2 W_{1}\right), \mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)\right\} \geq 1$. Then we may suppose by shifting if necessary that $2 y \equiv 0(\bmod n)$, and by symmetry that $\mathrm{v}_{2 \bar{y}}\left(2 W_{1}\right) \leq \mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)$. Since $\operatorname{supp}\left(W_{1}\right) \cap \operatorname{supp}\left(W_{2}\right)=\emptyset$, we can assume that $\mathrm{v}_{\bar{y}}\left(W_{1}\right)=0$ and $\mathrm{v}_{\bar{y}}\left(W_{2}\right) \geq 2$, and it follows that

$$
\sigma\left(W_{1} \cdot\left(\bar{y}+\frac{\bar{n}}{2}\right)^{[-1]}\right)=\sigma\left(W_{2} \cdot\left(\bar{y}+\frac{\bar{n}}{2}\right) \cdot(\bar{y} \cdot \bar{y})^{[-1]}\right) .
$$

Thus A1 ensures that $\psi(\bar{y} \cdot \bar{y})$ and $\psi\left(W \cdot(\bar{y} \cdot \bar{y})^{[-1]}\right)$ are both product-one sequences, a contradiction. Hence $\min \left\{\mathrm{v}_{2 \bar{y}}\left(2 W_{1}\right), \mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)\right\}=0$, and it follows that

$$
\ell+1 \leq \mathrm{v}_{2 \bar{y}}\left(2 W^{\prime}\right)=\max \left\{\mathrm{v}_{2 \bar{y}}\left(2\left(W_{1} \cdot\left(\overline{x_{1}} \cdot \overline{x_{3}}\right)^{[-1]}\right)\right), \mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)\right\} \leq \ell+1
$$

Thus $\mathrm{v}_{2 \bar{y}}\left(2 W^{\prime}\right)=\mathrm{v}_{2 \bar{y}}\left(2 W_{2}\right)=\left|W_{2}\right|=\ell+1$. If $|W| \geq n+2$, then $\ell \geq \frac{n}{2}$, and thus $\mathrm{v}_{2 \bar{y}}\left(2 W^{\prime}\right) \geq\left|W^{\prime}\right|+2-\frac{n}{2} \geq \ell+2$, a contradiction. Therefore $|W|=n$ and $2 W_{2}=(2 \bar{y})^{\left[\frac{n}{2}\right]}=\left(2 \overline{x_{2}}\right)^{\left[\frac{n}{2}\right]}$ with $\mathrm{v}_{2 \overline{x_{2}}}\left(2 W_{1}\right)=0$.

From now on, we assume that $\left(\overline{x_{1}}, \overline{x_{3}}\right)$ is chosen to make $|H|$ maximal.
SUBCASE 2.1. H is non-trivial.
If $n=4$, then $H \subset 2(\mathbb{Z} / 4 \mathbb{Z}) \cong C_{2}$ implies that $H=2(\mathbb{Z} / 4 \mathbb{Z})$, whence $\sum_{\ell}\left(2 W^{\prime}\right)=2(\mathbb{Z} / 4 \mathbb{Z})$, a contradiction. Thus we can assume that $n \geq 6$.

Suppose that $[2(\mathbb{Z} / n \mathbb{Z}): H] \geq 3$. Then $|H| \leq \frac{n}{6}$, and since $\ell \geq \frac{n}{2}-1$, we have

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq \ell+1+\frac{n}{2}-\frac{n}{2|H|} \geq \ell+1+3|H|-3
$$

Then it follows that $\min \left\{\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right), \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right)\right\} \geq 3|H|-3$, for otherwise, we obtain that

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \leq \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right)+\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right) \leq(\ell+1)+(3|H|-4)
$$

a contradiction. Moreover, we obtain that $\max \left\{\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right), \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right)\right\}$ $\geq 3|H|-1$, for otherwise $3|H|-2 \leq \frac{n}{2}-2 \leq \ell-1$ implies that

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \leq \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right)+\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right) \leq(\ell-1)+(3|H|-2)
$$

a contradiction. Then it suffices to show the case when $\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right) \leq$ $\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right)$. Indeed the other case when $\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right) \geq \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right)$ follows by an identical argument. Since $g \in(2(\mathbb{Z} / n \mathbb{Z})) / H$, by shifting if necessary, we can assume that $g=H$, whence $\left|\left(2 W_{1}\right)_{H}\right| \geq 3|H|-3$ and $\left|\left(2 W_{2}\right)_{H}\right| \geq$
$3|H|-1$. Since H is a non-trivial cyclic group, it follows by $s(H)=2|H|-1$ that there exist $U_{1} \mid W_{1}$ and $U_{2} \mid W_{2}$ such that $2 U_{1}$ and $2 U_{2}$ are zero-sum sequences over H of length $\left|U_{1}\right|=\left|U_{2}\right|=|H|$. Since $\left|\left(2\left(W_{2} \cdot U_{2}^{[-1]}\right)\right)_{H}\right| \geq 2|H|-1$, there also exists $U_{3} \mid W_{2} \cdot U_{2}^{[-1]}$ such that $2 U_{3}$ is a zero-sum sequence over H of length $\left|U_{3}\right|=|H|$. Since $\sigma\left(U_{k}\right) \in\left\{\overline{0}, \frac{\bar{n}}{2}\right\}$ for all $k \in[1,3]$, there exist distinct $i, j \in[1,3]$ such that $\sigma\left(U_{i}\right)=\sigma\left(U_{j}\right)$. If $\sigma\left(U_{1}\right)=\sigma\left(U_{j}\right)$ for some $j \in[2,3]$, then $\sigma\left(W_{1} \cdot U_{1}^{[-1]}\right)=\sigma\left(W_{2} \cdot U_{j}^{[-1]}\right)$, and thus A1 implies that $\psi\left(U_{1} \cdot U_{j}\right)$ and $\psi\left(W \cdot\left(U_{1} \cdot U_{j}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction. If $\sigma\left(U_{2}\right)=\sigma\left(U_{3}\right)$, then $\sigma\left(W_{1} \cdot U_{1}^{[-1]}\right)=\sigma\left(W_{2} \cdot U_{1} \cdot\left(U_{2} \cdot U_{3}\right)^{[-1]}\right)$ and $\left|W_{1} \cdot U_{1}^{[-1]}\right|=\frac{|W|}{2}-|H|=\left|W_{2} \cdot U_{1} \cdot\left(U_{2} \cdot U_{3}\right)^{[-1]}\right|$. Thus A1 ensures that $\psi\left(U_{2} \cdot U_{3}\right)$ and $\psi\left(W \cdot\left(U_{2} \cdot U_{3}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction.

Hence $[2(\mathbb{Z} / n \mathbb{Z}): H]=2$, and we obtain that $\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq\left|W^{\prime}\right|$. Then we may assume by shifting if necessary that $\operatorname{supp}\left(2 W^{\prime}\right) \subset H$, and hence $\operatorname{supp}\left(W^{\prime}\right) \subset 2(\mathbb{Z} / n \mathbb{Z})$. Since $\operatorname{supp}\left(W_{1}\right) \cap \operatorname{supp}\left(W_{2}\right)=\emptyset$ and $\left|W_{2}\right| \geq \frac{n}{2}$, we infer in view of $\operatorname{supp}\left(W_{2}\right) \subset 2(\mathbb{Z} / n \mathbb{Z})$ that there exists $\bar{y} \in \operatorname{supp}\left(W_{2}\right)$ with $\mathrm{v}_{\bar{y}}\left(W_{2}\right) \geq 2$. By swapping the role between $\left(\overline{x_{1}}, \overline{x_{3}}\right)$ and (\bar{y}, \bar{y}), we have that $|K|=\left|\mathrm{H}\left(\sum_{\ell}\left(2 W^{\prime \prime}\right)\right)\right| \leq|H|$ by the choice of $\left(\overline{x_{1}}, \overline{x_{3}}\right)$, where $W^{\prime \prime}=$ $W_{1} \cdot\left(W_{2} \cdot(\bar{y} \cdot \bar{y})^{[-1]}\right)$. Then we assert that $2 \overline{x_{1}} \in H$. If K is trivial, then A2 ensures that $2 W_{1}=\left(2 \overline{x_{1}}\right)^{\left[\frac{n}{2}\right]}$, and it follows by $n \geq 6$ that $2 \overline{x_{1}} \in H$. If K is non-trivial, then we must have $|K|=|H|$, for otherwise $[2(\mathbb{Z} / n \mathbb{Z}): K] \geq 3$, and then the argument from the beginning of SUBCASE 2.1 leads to a contradiction. As two subgroups of a finite cyclic group having the same order are equal, we obtain that $K=H$, and since W^{\prime} and $W^{\prime \prime}$ share at least one term in common $(n \geq 6)$, it follows that the K-coset containing supp $\left(2 W^{\prime \prime}\right)$ must be H, whence $2 \overline{x_{1}} \in H$. Thus, in all cases, we obtain that

$$
\sigma\left(W^{\prime}\right)=2 \sigma\left(W_{2}\right)-2 \overline{x_{1}} \in H=\Sigma_{\ell}\left(2 W^{\prime}\right)
$$

where the final equality follows from the fact that H is the stabilizer of $\sum_{\ell}\left(2 W^{\prime}\right)$. Hence there exists $T \mid W^{\prime}$ of length $|T|=\ell$ such that $2 \sigma(T)=\sigma\left(W^{\prime}\right)$, and thus we infer that $\sigma(T)=\sigma\left(W^{\prime} \cdot T^{[-1]}\right)$ and $|T|=\left|W^{\prime} \cdot T^{[-1]}\right|$. Therefore A1 ensures that $\psi\left(\overline{x_{1}} \cdot \overline{x_{3}}\right)$ and $\psi\left(W^{\prime}\right)$ are both product-one sequences, a contradiction.

SUBCASE 2.2. H is trivial.
By A2, we have $2 W_{2}=\left(2 \overline{x_{2}}\right)^{\left[\frac{n}{2}\right]}$. If $\mathrm{h}\left(W_{2}\right) \geq 2$, then we may assume that $\overline{x_{2}}=\overline{x_{4}}$. By swapping the role between $\left(\overline{x_{1}}, \overline{x_{3}}\right)$ and $\left(\overline{x_{2}}, \overline{x_{4}}\right)$, it follows by the choice of $\left(\overline{x_{1}}, \overline{x_{3}}\right)$ that $\mathrm{H}\left(\sum_{\ell}\left(2 W^{\prime \prime}\right)\right)$ is also trivial, where $W^{\prime \prime}=W_{1} \cdot\left(W_{2} \cdot\left(\overline{x_{2}}\right.\right.$. $\left.\overline{x_{4}}\right)^{[-1]}$. Again by A2, we obtain that $2 W_{1}=\left(2 \overline{x_{1}}\right)^{\left[\frac{n}{2}\right]}$ with $2 \overline{x_{1}} \neq 2 \overline{x_{2}}$.

If $n=4$, then we may assume in view of $\mathrm{h}(W) \geq 2$ that

$$
W=W_{1} \cdot W_{2}={\overline{x_{1}}}^{[2]} \cdot\left(\overline{x_{2}} \cdot\left(\overline{x_{2}}+\overline{2}\right)\right)
$$

where $\overline{x_{1}}, \overline{x_{2}} \in \mathbb{Z} / 4 \mathbb{Z}$ with $2 \overline{x_{1}} \neq 2 \overline{x_{2}}$ (by A2); Indeed, the other possibility is that $W=W_{1} \cdot W_{2}=\overline{x_{1}}{ }^{[2]} \cdot \overline{x_{2}}{ }^{[2]}$, which implies that $\psi\left(\overline{x_{1}} \cdot \overline{x_{1}}\right)$ and $\psi\left(\overline{x_{2}} \cdot \overline{x_{2}}\right)$ are both product-one sequences, a contradiction. Since $\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)$, it follows that $x_{1} \equiv x_{2}+1(\bmod 2)$. Thus $\psi(W)$ is the desired sequence for (a).

If $n \geq 6$, then it follows by $2 W_{2}=\left(2 \overline{x_{2}}\right)^{\left[\frac{n}{2}\right]}$ and the Pigeonhole Principle that $\mathrm{h}\left(W_{2}\right) \geq 2$. Thus we obtain that $2 W=\left(2 \overline{x_{1}}\right)^{\left[\frac{n}{2}\right]} \cdot\left(2 \overline{x_{2}}\right)^{\left[\frac{n}{2}\right]}$, whence

$$
W=W_{1} \cdot W_{2}=\left({\overline{x_{1}}}^{[v]} \cdot\left(\overline{x_{1}}+\frac{\bar{n}}{2}\right)^{\left[\frac{n}{2}-v\right]}\right) \cdot\left({\overline{x_{2}}}^{[w]} \cdot\left(\overline{x_{2}}+\frac{\bar{n}}{2}\right)^{\left[\frac{n}{2}-w\right]}\right),
$$

where $\overline{x_{1}}, \overline{x_{2}} \in \mathbb{Z} / n \mathbb{Z}$ with $2 \overline{x_{1}} \neq 2 \overline{x_{2}}$ (by A2), and $v, w \in\left[0, \frac{n}{2}\right]$. Since $\sigma\left(W_{1}\right)=$ $\sigma\left(W_{2}\right)$, it follows that $x_{1}-x_{2} \equiv v-w(\bmod 2)$. All that remains is to show that $\operatorname{gcd}\left(x_{1}-x_{2}, \frac{n}{2}\right)=1$. Assume to the contrary that $\operatorname{gcd}\left(x_{1}-x_{2}, \frac{n}{2}\right)=d \geq 2$. Then we set $n^{\prime}=\frac{n}{2 d}$, and since $2 W^{\prime}=\left(2 \overline{x_{1}}\right)^{[\ell-1]} \cdot\left(2 \overline{x_{2}}\right)^{[\ell+1]}$, it follows by $n^{\prime}\left(2 x_{1}-2 x_{2}\right) \equiv 0(\bmod n)$ that

$$
\Sigma_{\ell}\left(2 W^{\prime}\right)=\left\{k\left(2 \overline{x_{1}}-2 \overline{x_{2}}\right)-2 \overline{x_{2}} \mid k \in\left[0, n^{\prime}-1\right]\right\} .
$$

Thus we obtain that $2 \overline{x_{1}}-2 \overline{x_{2}} \in \mathrm{H}\left(\sum_{\ell}\left(2 W^{\prime}\right)\right)=H$, and since H is trivial, it follows that $2 \overline{x_{1}}=2 \overline{x_{2}}$, a contradiction. Therefore $\operatorname{gcd}\left(x_{1}-x_{2}, \frac{n}{2}\right)=1$.

To prove the "In particular" statement, we assume to the contrary that there exists a minimal product-one sequence S such that $S=S_{1} \cdot S_{2}$, where $S_{1} \in \mathcal{F}(\langle\alpha\rangle)$ and $S_{2} \in \mathcal{F}(G \backslash\langle\alpha\rangle)$ with $\left|S_{2}\right| \geq n+2$. Then we suppose that $S_{2}=$ $\prod_{i \in\left[1,\left|S_{2}\right|\right]}^{\bullet} \alpha^{x_{i}} \tau$ and $S_{1}=T_{1} \cdot T_{2}$ such that $\pi^{*}\left(T_{1}\right)\left(\alpha^{x_{1}} \tau\right) \pi^{*}\left(T_{2}\right)\left(\alpha^{x_{2}} \tau \cdots \alpha^{\left.x_{\left|S_{2}\right|} \tau\right)}\right.$ $=1_{G}$. Since $S \in \mathcal{A}(G)$, it follows that

$$
S^{\prime \prime}=\left(\pi^{*}\left(T_{1}\right) \alpha^{x_{1}} \tau\right) \cdot\left(\pi^{*}\left(T_{2}\right) \alpha^{x_{2}} \tau\right) \cdot\left(\prod_{i \in\left[3,\left|S_{2}\right|\right]}^{\bullet} \alpha^{x_{i}} \tau\right) \in \mathcal{A}(G \backslash\langle\alpha\rangle)
$$

of length $\left|S^{\prime \prime}\right|=\left|S_{2}\right| \geq n+2$, but this is impossible by the main statement.
Proposition 3.3. Let $G=\langle\alpha, \tau| \alpha^{2 n}=1_{G}, \tau^{2}=\alpha^{n}$, and $\left.\tau \alpha=\alpha^{-1} \tau\right\rangle$ be a dicyclic group, where $n \geq 2$. Let $S \in \mathcal{F}(G)$ be a minimal product-one sequence such that $|S| \geq 2 n+2$ and $\operatorname{supp}(S) \subset G \backslash\langle\alpha\rangle$. Then S is a sequence of length $|S|=2 n+2$ having the form

$$
S=\left(\alpha^{x} \tau\right)^{[n+2]} \cdot S_{0}
$$

where $x \in[0,2 n-1]$, and S_{0} is a sequence of length $\left|S_{0}\right|=n$ having one of the following two forms:
(a) $S_{0}=\left(\alpha^{y} \tau\right)^{[2]} \cdot \alpha^{y+n} \tau \cdot \alpha^{y_{1}} \tau \cdot \ldots \cdot \alpha^{y_{n-3}} \tau$, where $n \geq 3, y, y_{1}, \ldots, y_{n-3} \in$ $[0,2 n-1]$ such that $2 y \not \equiv 2 x(\bmod 2 n), 2 y_{i} \not \equiv 2 x(\bmod 2 n)$ for all i, and $\left(y_{1}+\cdots+y_{n-3}\right)+3 y+n+x \equiv(n+1)(x+n)(\bmod 2 n)$.
(b) $S_{0}=\left(\alpha^{y} \tau\right)^{[n]}$, where $y \in[0,2 n-1]$ such that $2 y \not \equiv 2 x(\bmod 2 n)$ and $n y+x \equiv(n+1)(x+n)(\bmod 2 n)$.
In particular, there are no minimal product-one sequences S over G such that $S=S_{1} \cdot S_{2}$ for some $S_{1} \in \mathcal{F}(\langle\alpha\rangle)$ and $S_{2} \in \mathcal{F}(G \backslash\langle\alpha\rangle)$ of length $\left|S_{2}\right| \geq 2 n+4$.

Proof. For every $x \in \mathbb{Z}$, we set $\bar{x}=x+2 n \mathbb{Z} \in \mathbb{Z} / 2 n \mathbb{Z}$. Let $S=\prod_{i \in[1,|S|]}^{\bullet} \alpha^{x_{i}} \tau \in$ $\mathcal{A}(G)$ be of length $|S| \geq 2 n+2$ with $\alpha^{x_{1}} \tau \cdots \alpha^{x_{|S|}} \tau=1_{G}$, where $x_{1}, \ldots, x_{|S|} \in$ [$0,2 n-1]$. Since $S \in \mathcal{A}(G)$, it follows that $|S|$ is even, and after renumbering if necessary, we set

$$
W=\overline{x_{1}} \cdot \ldots \cdot \overline{x_{|S|}}=W_{1} \cdot W_{2} \in \mathcal{F}(\mathbb{Z} / 2 n \mathbb{Z})
$$

where $W_{1}=\prod_{i \in[1,|S| / 2]}^{\bullet} \overline{x_{2 i-1}}$, and $W_{2}=\prod_{i \in[1,|S| / 2]}^{\bullet} \overline{x_{2 i}}$. Thus we have that $\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)+\left|W_{1}\right| \bar{n}$. If we shift the sequence W by \bar{y} for some $y \in \mathbb{Z}$, then the corresponding sequence $S^{\prime}=\prod_{i \in[1,|S|]}^{\bullet} \alpha^{x_{i}+y} \tau$ is still a minimal productone sequence. If S^{\prime} has the asserted structure, then the same is true for S whence we may shift the sequence W whenever this is convenient. For every subsequence $U=\overline{y_{1}} \cdot \ldots \cdot \overline{y_{v}}$ of W, we denote by $\psi(U)=\alpha^{y_{1}} \tau \cdot \ldots \cdot \alpha^{y_{v}} \tau$ the corresponding subsequence of S.

A1. Let $U=U_{1} \cdot U_{2}$ be a subsequence of W such that $\left|U_{1}\right|=\left|U_{2}\right|$ and $\sigma\left(U_{1}\right)=$ $\sigma\left(U_{2}\right)+\left|U_{1}\right| \bar{n}$. Then $\psi(U)$ is a product-one sequence.

Proof of A1. Suppose that $U_{1}=\overline{y_{1}} \cdot \ldots \cdot \overline{y_{\left|U_{1}\right|}}$ and $U_{2}=\overline{z_{1}} \cdot \ldots \cdot \overline{z_{\left|U_{1}\right|}}$. Since $\sigma\left(U_{1}\right)=\sigma\left(U_{2}\right)+\left|U_{1}\right| \bar{n}$, it follows that

$$
\alpha^{z_{1}} \tau \alpha^{y_{1}} \tau \cdots \alpha^{z_{\mid U_{1}} \mid} \tau \alpha^{y_{\left|U_{1}\right|}} \tau=\alpha^{\left(z_{1}+\cdots+z_{\left|U_{1}\right|}\right)-\left(y_{1}+\cdots+y_{\left|U_{1}\right|}\left|+\left|U_{1}\right| n\right.\right.}=1_{G}
$$

whence $\psi(U)$ is a product-one sequence.
If $\operatorname{supp}\left(W_{1}\right) \cap\left(\operatorname{supp}\left(W_{2}\right)+\bar{n}\right) \neq \emptyset$, say $\overline{x_{1}}=\overline{x_{2}}+\bar{n}$, then since $\sigma\left(W_{1}\right)=$ $\sigma\left(W_{2}\right)+\left|W_{1}\right| \bar{n}$, it follows by A1 that $\psi\left(\overline{x_{1}} \cdot \overline{x_{2}}\right)$ and $\psi\left(W \cdot\left(\overline{x_{1}} \cdot \overline{x_{2}}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction. Therefore $\operatorname{supp}\left(W_{1}\right) \cap\left(\operatorname{supp}\left(W_{2}\right)+\right.$ $\bar{n})=\emptyset$, and since $|S| \geq 2 n+2$, it follows that $\mathrm{h}(W) \geq 2$.

A2. $\min \left\{\mathrm{v}_{2 \bar{g}}\left(2 W_{1}\right), \mathrm{v}_{2 \bar{g}}\left(2 W_{2}\right)\right\} \leq 1$ for every $\bar{g} \in \mathbb{Z} / 2 n \mathbb{Z}$.
Proof of A2. Assume to the contrary that there exists $\bar{g} \in \mathbb{Z} / 2 n \mathbb{Z}$ such that $\min \left\{\mathrm{v}_{2 \bar{g}}\left(2 W_{1}\right), \mathrm{v}_{2 \bar{g}}\left(2 W_{2}\right)\right\} \geq 2$. Then, for each $i \in[1,2]$, we have $\mathrm{v}_{\bar{g}}\left(W_{i}\right)+$ $\mathrm{v}_{\bar{g}+\bar{n}}\left(W_{i}\right)=\mathrm{v}_{2 \bar{g}}\left(2 W_{i}\right) \geq 2$. We may assume without loss of generality that $\mathrm{v}_{\bar{g}}\left(W_{1}\right) \geq 1$. Since $\operatorname{supp}\left(W_{1}\right) \cap\left(\operatorname{supp}\left(W_{2}\right)+\bar{n}\right)=\emptyset$, we must have $\mathrm{v}_{\bar{g}+\bar{n}}\left(W_{2}\right)=$ 0 , whence $\mathrm{v}_{\bar{g}}\left(W_{2}\right) \geq 2$. Since $\operatorname{supp}\left(W_{1}\right) \cap\left(\operatorname{supp}\left(W_{2}\right)+\bar{n}\right)=\emptyset$, we must have $\mathrm{v}_{\bar{g}+\bar{n}}\left(W_{1}\right)=0$, whence $\mathrm{v}_{\bar{g}}\left(W_{1}\right) \geq 2$. We set $U_{1}=U_{2}=\bar{g} \cdot \bar{g}$. It follows that $U_{1} \mid W_{1}$ and $U_{2} \mid W_{2}$ such that $\left|U_{1}\right|=\left|U_{2}\right|$ with $\sigma\left(U_{1}\right)=\sigma\left(U_{2}\right)+\left|U_{1}\right| \bar{n}$, and $\left|W_{1} \cdot U_{1}^{[-1]}\right|=\left|W_{2} \cdot U_{2}^{[-1]}\right|$ with $\sigma\left(W_{1} \cdot U_{1}^{[-1]}\right)=\sigma\left(W_{2} \cdot U_{2}^{[-1]}\right)+\left|W_{1} \cdot U_{1}^{[-1]}\right| \bar{n}$. Thus A1 ensures that $\psi\left(U_{1} \cdot U_{2}\right)$ and $\psi\left(W \cdot\left(U_{1} \cdot U_{2}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction.

CASE 1. There exists $\bar{y} \in \operatorname{supp}(W)$ such that $\mathrm{v}_{\bar{y}}(W) \geq 2$ and $\bar{y}+\bar{n} \in$ $\operatorname{supp}(W)$.

In view of $\operatorname{supp}\left(W_{1}\right) \cap\left(\operatorname{supp}\left(W_{2}\right)+\bar{n}\right)=\emptyset$, we may assume without loss of generality that $\bar{y} \cdot(\bar{y}+\bar{n}) \mid W_{1}$. Let

$$
W^{\prime}=W \cdot(\bar{y} \cdot(\bar{y}+\bar{n}))^{[-1]} \quad \text { and } \quad \ell=\frac{\left|W^{\prime}\right|}{2}=\frac{|W|}{2}-1
$$

If $\sum_{\ell}\left(2 W^{\prime}\right)=2(\mathbb{Z} / 2 n \mathbb{Z})$, then since $\sigma\left(W^{\prime}\right)+\ell \bar{n}=2 \sigma\left(W_{2}\right)+2 \ell \bar{n}-2 \bar{y} \in$ $2(\mathbb{Z} / 2 n \mathbb{Z})$, it follows that there exists a subsequence $T \mid W^{\prime}$ of length $|T|=\ell$ such that $2 \sigma(T)=\sigma\left(W^{\prime}\right)+\ell \bar{n}$. Hence we infer that $\sigma(T)=\sigma\left(W^{\prime} \cdot T^{[-1]}\right)+|T| \bar{n}$ and $|T|=\left|W^{\prime} \cdot T^{[-1]}\right|$. Thus A1 ensures that $\psi(\bar{y} \cdot(\bar{y}+\bar{n}))$ and $\psi\left(W^{\prime}\right)$ are both product-one sequences, a contradiction. Therefore $\sum_{\ell}\left(2 W^{\prime}\right) \subsetneq 2(\mathbb{Z} / 2 n \mathbb{Z})$.

Let $H=\mathrm{H}\left(\sum_{\ell}\left(2 W^{\prime}\right)\right)$. By Lemma 3.1, we obtain that

$$
\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right| \geq\left(\sum_{g \in(2(\mathbb{Z} / 2 n \mathbb{Z})) / H} \min \left\{\ell, \mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right)\right\}-\ell+1\right)|H| .
$$

If $\mathrm{h}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \leq \ell$, then

$$
\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right| \geq\left(\left|2 W^{\prime}\right|-\ell+1\right)|H| \geq n=|2(\mathbb{Z} / 2 n \mathbb{Z})|
$$

a contradiction. If there exist distinct $g_{1}, g_{2} \in(2(\mathbb{Z} / 2 n \mathbb{Z})) / H$ such that $\ell<$ $\mathrm{v}_{g_{k}}\left(\phi_{H}\left(2 W^{\prime}\right)\right)$ for all $k \in[1,2]$, then

$$
\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right| \geq(2 \ell-\ell+1)|H| \geq n=|2(\mathbb{Z} / 2 n \mathbb{Z})|
$$

a contradiction. Thus there exists only one element, say $g \in(2(\mathbb{Z} / 2 n \mathbb{Z})) / H$, such that $\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right)>\ell$, which implies that

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq\left|2 W^{\prime}\right|+1-\frac{\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right|}{|H|} \geq\left|W^{\prime}\right|+2-\frac{n}{|H|}
$$

SUBCASE 1.1. H is non-trivial.
If $[2(\mathbb{Z} / 2 n \mathbb{Z}): H]=2$, then $\vee_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq\left|W^{\prime}\right|$. We may assume by shifting if necessary that $\operatorname{supp}\left(2 W^{\prime}\right) \subset H$, and hence $\operatorname{supp}\left(W^{\prime}\right) \subset 2(\mathbb{Z} / 2 n \mathbb{Z})$. Since $\mathrm{v}_{\bar{y}}(W) \geq 2$, it follows that $\bar{y} \in \operatorname{supp}\left(W^{\prime}\right) \subset 2(\mathbb{Z} / 2 n \mathbb{Z})$, whence $\sigma\left(W^{\prime}\right)+$ $\ell \bar{n}=2 \sigma\left(W_{2}\right)-2 \bar{y} \in H$. Thus there exists $T \mid W^{\prime}$ of length $|T|=\ell$ such that $2 \sigma(T)=\sigma\left(W^{\prime}\right)+\ell \bar{n}$, and hence we infer that $\sigma(T)=\sigma\left(W^{\prime} \cdot T^{[-1]}\right)+|T| \bar{n}$ and $|T|=\left|W^{\prime} \cdot T^{[-1]}\right|$. It follows by A1 that $\psi(\bar{y} \cdot(\bar{y}+\bar{n}))$ and $\psi\left(W^{\prime}\right)$ are both product-one sequences, a contradiction.

Therefore $[2(\mathbb{Z} / 2 n \mathbb{Z}): H] \geq 3$, and hence $|H| \leq \frac{n}{3}$. Since $\ell \geq n$, we have

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq \ell+1+(n+1)-\frac{n}{|H|} \geq \ell+2+3|H|-3
$$

Then $\min \left\{\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right), \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right)\right\} \geq 3|H|-2$, for otherwise, we obtain that

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \leq \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right)+\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right) \leq(\ell+1)+(3|H|-3)
$$

a contradiction. Since $g \in(2(\mathbb{Z} / 2 n \mathbb{Z})) / H$, by shifting if necessary, we can assume that $g=H$, whence $\left|\left(2 W_{i}\right)_{H}\right| \geq 3|H|-2$ for all $i \in[1,2]$. It follows by
$\mathrm{s}(H)=2|H|-1$ that there exist $U_{1} \mid W_{1}$ and $V_{1} \mid W_{2}$ of length $\left|U_{1}\right|=\left|V_{1}\right|=|H|$ such that $\sigma\left(U_{1}\right), \sigma\left(V_{1}\right) \in\{\overline{0}, \bar{n}\}$. Therefore $\left|\left(2 W_{1} \cdot\left(2 U_{1}\right)^{[-1]}\right)_{H}\right| \geq 2|H|-2$ and $\left|\left(2 W_{2} \cdot\left(2 V_{1}\right)^{[-1]}\right)_{H}\right| \geq 2|H|-2$.

Suppose that there exist $U_{2} \mid W_{1} \cdot U_{1}^{[-1]}$ and $V_{2} \mid W_{2} \cdot V_{1}^{[-1]}$ with $\left|U_{2}\right|=$ $\left|V_{2}\right|=|H|$ and $\sigma\left(U_{2}\right), \sigma\left(V_{2}\right) \in\{\overline{0}, \bar{n}\}$. If there exists $i \in[1,2]$ such that $\sigma\left(U_{i}\right)=\sigma\left(V_{i}\right)+|H| \bar{n}$, then A1 implies that $\psi\left(U_{i} \cdot V_{i}\right)$ and $\psi\left(W \cdot\left(U_{i} \cdot V_{i}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction. Otherwise, we have $\sigma\left(U_{1}\right.$. $\left.U_{2}\right)=\sigma\left(V_{1} \cdot V_{2}\right)+2|H| \bar{n}$, whence A1 ensures that $\psi\left(U_{1} \cdot U_{2} \cdot V_{1} \cdot V_{2}\right)$ and $\psi\left(W \cdot\left(U_{1} \cdot U_{2} \cdot V_{1} \cdot V_{2}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction.

Assume that either $\left(2 W_{1} \cdot\left(2 U_{1}\right)^{[-1]}\right)_{H}$ or $\left(2 W_{2} \cdot\left(2 V_{1}\right)^{[-1]}\right)_{H}$ dose not contain a zero-sum subsequence of length $|H|$, say $2 W_{1} \cdot\left(2 U_{1}\right)^{[-1]}$, which then forces $\left|\left(2 W_{1} \cdot\left(2 U_{1}\right)^{[-1]}\right)_{H}\right|=2|H|-2$. By [16, Proposition 5.1.12], there exist $h_{1}, h_{2} \in$ H with $\operatorname{ord}\left(h_{1}-h_{2}\right)=|H|$ such that $\left(2 W_{1} \cdot\left(2 U_{1}\right)^{[-1]}\right)_{H}=h_{1}^{[|H|-1]} \cdot h_{2}^{[|H|-1]}$. Then ord $\left(h_{1}-h_{2}\right)=|H|$ ensures that

$$
H=\underbrace{\left\{h_{1}, h_{2}\right\}+\cdots+\left\{h_{1}, h_{2}\right\}}_{|H|-1}=\Sigma_{|H|-1}\left(h_{1}^{[|H|-1]} \cdot h_{2}^{[|H|-1]}\right)
$$

Thus we infer that there exist subsequences $2 U_{3} \mid 2 W_{1} \cdot\left(2 U_{1}\right)^{[-1]}$ and $2 V_{3} \mid 2 W_{2}$. $\left(2 V_{1}\right)^{[-1]}$ such that $\left|2 U_{3}\right|=\left|2 V_{3}\right|=|H|-1$ and $\sigma\left(2 U_{3}\right)=\sigma\left(2 V_{3}\right)$. Hence $\sigma\left(U_{3}\right)=\sigma\left(V_{3}\right)$ or $\sigma\left(U_{3}\right)=\sigma\left(V_{3}\right)+\bar{n}$. If there exists $i \in\{1,3\}$ such that $\sigma\left(U_{i}\right)=\sigma\left(V_{i}\right)+\left|U_{i}\right| \bar{n}$, then A1 implies that $\psi\left(U_{i} \cdot V_{i}\right)$ and $\psi\left(W \cdot\left(U_{i} \cdot V_{i}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction. Otherwise, we have $\sigma\left(U_{1} \cdot U_{3}\right)=$ $\sigma\left(V_{1} \cdot V_{3}\right)+(2|H|-1) \bar{n}$, whence A1 ensures that $\psi\left(U_{1} \cdot U_{3} \cdot V_{1} \cdot V_{3}\right)$ and $\psi\left(W \cdot\left(U_{1} \cdot U_{3} \cdot V_{1} \cdot V_{3}\right)^{[-1]}\right)$ are both product-one sequences, a contradiction.

SUBCASE 1.2. H is trivial.
Since $\ell=\frac{\left|W^{\prime}\right|}{2} \geq n$, it follows that $\mathrm{v}_{g}\left(2 W^{\prime}\right) \geq\left|W^{\prime}\right|+2-n \geq \ell+2$. Hence A2 ensures that $\min \left\{\mathrm{v}_{g}\left(2 W_{1}\right), \mathrm{v}_{g}\left(2 W_{2}\right)\right\}=1$. If $g=2 \bar{y}$, it follows by $\bar{y} \cdot(\bar{y}+\bar{n}) \mid W_{1}$ that $\mathrm{v}_{g}\left(2 W_{2}\right)=1$, whence $\ell+2 \leq \mathrm{v}_{g}\left(2 W^{\prime}\right)=\mathrm{v}_{g}\left(2 W_{1}\right)-2+1 \leq \ell$, a contradiction. Thus $g \neq 2 \bar{y}$. Since

$$
\ell+2 \leq \mathrm{v}_{g}\left(2 W^{\prime}\right)=\mathrm{v}_{g}\left(2\left(W_{1} \cdot(\bar{y} \cdot(\bar{y}+\bar{n}))^{[-1]}\right)\right)+\mathrm{v}_{g}\left(2 W_{2}\right)
$$

we have $\mathrm{v}_{g}\left(2 W_{1}\right)=1$ and $\mathrm{v}_{g}\left(2 W_{2}\right)=\ell+1$. Then $\mathrm{v}_{g}\left(2 W^{\prime}\right)=\ell+2$. If $|W| \geq$ $2 n+4$, then $\ell \geq n+1$, and hence $\mathrm{v}_{g}\left(2 W^{\prime}\right) \geq\left|W^{\prime}\right|+2-n \geq \ell+3$, a contradiction. Therefore $|W|=2 n+2, \ell=n, 2 W_{2}=(2 \bar{x})^{[n+1]}$, and $\mathrm{v}_{2 \bar{x}}\left(2 W_{1}\right)=1$ for some $\bar{x} \in \mathbb{Z} / 2 n \mathbb{Z}$ with $2 \bar{x}=g \neq 2 \bar{y}$.

Since $\operatorname{supp}\left(W_{1}\right) \cap\left(\operatorname{supp}\left(W_{2}\right)+\bar{n}\right)=\emptyset$, we may assume that $W_{2}=\bar{x}^{[n+1]}$ and $\mathrm{v}_{\bar{x}}\left(W_{1}\right)=1$. It follows by $\mathrm{v}_{\bar{y}}(W) \geq 2$ and $\left|W_{1}\right|=n+1$ that $\bar{x} \cdot \bar{y} \cdot \bar{y} \cdot(\bar{y}+\bar{n}) \mid W_{1}$. Then $n \geq 3$ and

$$
W=W_{1} \cdot W_{2}=(\bar{x} \cdot T) \cdot \bar{x}^{[n+1]},
$$

where $T \in \mathcal{F}(\mathbb{Z} / 2 n \mathbb{Z})$ with $|T|=n$ such that $2 \bar{x} \notin \operatorname{supp}(2 T)$ and $\bar{y}^{[2]} \cdot(\bar{y}+\bar{n}) \mid T$. Since $\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)+\left|W_{1}\right| \bar{n}$, it follows that $\sigma(T)+\bar{x}=(n+1) \bar{x}+(n+1) \bar{n}$. Therefore $\psi(W)$ is the desired sequence for (a).
CASE 2. For every $\bar{x} \in \operatorname{supp}(W)$ with $\mathbf{v}_{\bar{x}}(W) \geq 2$, we have that $\bar{x}+\bar{n} \notin$ $\operatorname{supp}(W)$.

If $h(2 W) \leq 2$, then we have

$$
2 n+2 \leq|W|=|2 W| \leq \mathrm{h}(2 W)|2(\mathbb{Z} / 2 n \mathbb{Z})| \leq 2 n,
$$

a contradiction, and from the case hypothesis, we have $\mathrm{h}(W)=\mathrm{h}(2 W) \geq 3$. Let $\bar{x} \in \operatorname{supp}(W)$ be an element with $\mathrm{v}_{\bar{x}}(W)=\mathrm{h}(W) \geq 3$, and assume without loss of generality that

$$
\mathrm{v}_{\bar{x}}\left(W_{1}\right) \geq \mathrm{v}_{\bar{x}}\left(W_{2}\right) \quad \text { with } \mathrm{v}_{\bar{x}}\left(W_{1}\right) \geq 2
$$

If $\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right) \leq 1$, then it follows by the case hypothesis that

$$
2 n \leq|W|-2=\left|W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right| \leq|(\mathbb{Z} / 2 n \mathbb{Z}) \backslash\{\bar{x}+\bar{n}\}|=2 n-1
$$

a contradiction, whence $\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right) \geq 2$. Let $\bar{y} \in \operatorname{supp}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)$ be an element with $\mathrm{v}_{\bar{y}}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right) \geq 2$, and let

$$
W^{\prime}=W \cdot(\bar{x} \cdot \bar{x} \cdot \bar{y} \cdot \bar{y})^{[-1]} \quad \text { and } \quad \ell=\frac{\left|W^{\prime}\right|}{2}=\frac{|W|}{2}-2 .
$$

Suppose in addition that \bar{y} is chosen to satisfy either that $\mathrm{v}_{\bar{y}}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)=$ $\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)$, or that both $\mathrm{v}_{\bar{y}}\left(W_{2}\right) \geq 3$ and $\mathrm{h}(W) \leq \ell+2$.

If $\sum_{\ell}\left(2 W^{\prime}\right)=2(\mathbb{Z} / 2 n \mathbb{Z})$, then since $\sigma\left(W^{\prime}\right)+\ell \bar{n}=2 \sigma\left(W_{2}\right)+(2 \ell+2) \bar{n}-2 \bar{x}-$ $2 \bar{y} \in 2(\mathbb{Z} / 2 n \mathbb{Z})$, it follows that there exists a subsequence $T \mid W^{\prime}$ of length $|T|=$ ℓ such that $2 \sigma(T)=\sigma\left(W^{\prime}\right)+\ell \bar{n}$. Hence we infer $\sigma(T)=\sigma\left(W^{\prime} \cdot T^{[-1]}\right)+|T| \bar{n}$ and $|T|=\left|W^{\prime} \cdot T^{[-1]}\right|$. Thus A1 ensures that $\psi\left(\bar{x}^{[2]} \cdot \bar{y}^{[2]}\right)$ and $\psi\left(W^{\prime}\right)$ are both product-one sequences, a contradiction. Therefore $\sum_{\ell}\left(2 W^{\prime}\right) \subsetneq 2(\mathbb{Z} / 2 n \mathbb{Z})$.

Let $H=\mathrm{H}\left(\sum_{\ell}\left(2 W^{\prime}\right)\right)$. As at the start of the proof of CASE 1, it follows by Lemma 3.1 that there exists only one element, say $g \in(2(\mathbb{Z} / 2 n \mathbb{Z})) / H$, such that $\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq \ell+1$, which implies that

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq\left|2 W^{\prime}\right|+1-\frac{\left|\Sigma_{\ell}\left(2 W^{\prime}\right)\right|}{|H|} \geq\left|W^{\prime}\right|+2-\frac{n}{|H|}
$$

SUBCASE 2.1. H is non-trivial.
If $n=2$, then $H \subset 2(\mathbb{Z} / 4 \mathbb{Z}) \cong C_{2}$ implies that $H=2(\mathbb{Z} / 4 \mathbb{Z})$, whence $\sum_{\ell}\left(2 W^{\prime}\right)=2(\mathbb{Z} / 4 \mathbb{Z})$, a contradiction. Thus we can assume that $n \geq 3$.

If $[2(\mathbb{Z} / 2 n \mathbb{Z}): H]=2$, then $\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq\left|W^{\prime}\right|$. We may assume by shifting if necessary that $\operatorname{supp}\left(2 W^{\prime}\right) \subset H$, and hence $\operatorname{supp}\left(W^{\prime}\right) \subset 2(\mathbb{Z} / 2 n \mathbb{Z})$. We assert that $\sigma\left(W^{\prime}\right)+\ell \bar{n}=2 \sigma\left(W_{2}\right)-2 \bar{x}-2 \bar{y} \in H$. Clearly this holds true for $\bar{x}=\bar{y}$. Suppose $\bar{x} \neq \bar{y}$. Since $\mathrm{v}_{\bar{x}}(W)=\mathrm{h}(W) \geq 3$, it follows that $\bar{x} \in \operatorname{supp}\left(W^{\prime}\right) \subset 2(\mathbb{Z} / 2 n \mathbb{Z})$. If $\mathrm{v}_{\bar{y}}\left(W_{2}\right) \geq 3$, then $\bar{y} \in \operatorname{supp}\left(W^{\prime}\right) \subset 2(\mathbb{Z} / 2 n \mathbb{Z})$.

Suppose that $\mathrm{v}_{\bar{y}}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)=\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)$, and we need to verify $\bar{y} \in \operatorname{supp}\left(W^{\prime}\right) \subset 2(\mathbb{Z} / 2 n \mathbb{Z})$. If $\mathrm{h}\left(2 W^{\prime}\right) \leq 2$, then

$$
2 n-2 \leq\left|W^{\prime}\right|=\left|2 W^{\prime}\right| \leq \mathrm{h}\left(2 W^{\prime}\right)|H| \leq n
$$

a contradiction to $n \geq 3$. Hence, in view of the main case hypothesis, we have $\mathrm{h}\left(W^{\prime}\right)=\mathrm{h}\left(2 W^{\prime}\right) \geq 3$. Since $\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right) \geq \mathrm{h}\left(W^{\prime}\right) \geq 3$, it follows that $\bar{y} \in \operatorname{supp}\left(W^{\prime}\right) \subset 2(\mathbb{Z} / 2 n \mathbb{Z})$. Thus $\sigma\left(W^{\prime}\right)+\ell \bar{n} \in H$, which implies that there exists a subsequence $T \mid W^{\prime}$ of length $|T|=\ell$ such that $2 \sigma(T)=\sigma\left(W^{\prime}\right)+\ell \bar{n}$. Then $\sigma(T)=\sigma\left(W^{\prime} \cdot T^{[-1]}\right)+|T| \bar{n}$ and $|T|=\left|W^{\prime} \cdot T^{[-1]}\right|$. It follows by $\mathbf{A 1}$ that $\psi\left(\bar{x}^{[2]} \cdot \bar{y}^{[2]}\right)$ and $\psi\left(W^{\prime}\right)$ are both product-one sequences, a contradiction.

Therefore $[2(\mathbb{Z} / 2 n \mathbb{Z}): H] \geq 3$, and hence $|H| \leq \frac{n}{3}$. Since $\ell=\frac{\left|W^{\prime}\right|}{2} \geq n-1$, we have

$$
\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq \ell+1+n-\frac{n}{|H|} \geq \ell+1+3|H|-3
$$

We assert that $\min \left\{\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right), \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right)\right\} \geq 3|H|-2$. Assume to the contrary that $\min \left\{\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{1}\right)\right), \mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right)\right\} \leq 3|H|-3$. If $\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right) \leq$ ℓ, then $\mathrm{v}_{\bar{x}}\left(W_{1}\right) \geq 2$ implies that $\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \leq \mathrm{v}_{g}\left(\phi_{H}\left(2\left(W_{1} \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)\right)\right)+\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right) \leq \ell+3|H|-3$, a contradiction. Thus $\mathrm{v}_{g}\left(\phi_{H}\left(2 W_{2}\right)\right) \geq \ell+1 \geq n$, and hence $\mathrm{h}\left(2 W_{2}\right) \geq \frac{n}{|H|} \geq 3$. The main case hypothesis ensures that $\mathrm{h}\left(W_{2}\right)=\mathrm{h}\left(2 W_{2}\right) \geq 3$. If $\mathrm{v}_{\bar{y}}\left(W_{2}\right) \geq 2$, then $\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right)=\mathrm{v}_{g}\left(\phi_{H}\left(2\left(W_{1} \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)\right)\right)+\mathrm{v}_{g}\left(\phi_{H}\left(2\left(W_{2} \cdot(\bar{y} \cdot \bar{y})^{[-1]}\right)\right)\right) \leq$ $\ell+3|H|-3$, a contradiction. Suppose that $v_{\bar{y}}\left(W_{2}\right) \leq 1$. Then we infer that $\mathrm{v}_{\bar{y}}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)=\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)$. It follows by $\mathrm{h}\left(W_{2}\right) \geq 3$ that there exists $\bar{z} \in \operatorname{supp}\left(W_{2}\right)$ with $\vee_{\bar{z}}\left(W_{2}\right)=\mathrm{h}\left(W_{2}\right) \geq 3$. Then we assert that $\mathrm{v}_{\bar{x}}(W)=$ $\mathrm{h}(W) \leq \ell+2$. Assume to the contrary that $\mathrm{v}_{\bar{x}}(W)=\mathrm{h}(W) \geq \ell+3$. Since $\mathrm{v}_{\bar{x}}\left(W_{1}\right) \geq 2$, A2 implies $W_{1}=\bar{x}^{[\ell+2]}$ with $\mathrm{v}_{\bar{x}}\left(W_{2}\right)=1$, whence $\bar{y}=\bar{x}$. By the main case hypothesis, we have $\mathrm{v}_{2 \bar{x}}\left(2 W^{\prime}\right)=\mathrm{v}_{\bar{x}}\left(W^{\prime}\right)=\ell-1$. Since $g \in$ $(2(\mathbb{Z} / 2 n \mathbb{Z})) / H$ is the only element satisfying $\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq \ell+1 \geq 3$, it follows again by the main case hypothesis that $g=2 \bar{z}, W_{2}=\bar{x} \cdot \bar{z}^{[\ell+1]}$, and $\mathrm{v}_{\bar{z}}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)=\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)$. By swapping the role between \bar{y} and \bar{z}, the argument used in the case above when $\mathrm{v}_{\bar{y}}\left(W_{2}\right) \geq 2$ leads to a contradiction. Thus $\mathrm{v}_{\bar{x}}(W)=\mathrm{h}(W) \leq \ell+2$, and then the swapping argument again leads to a contradiction. Since $g \in(2(\mathbb{Z} / 2 n \mathbb{Z})) / H$, by shifting if necessary, we can assume that $g=H$, whence $\left|\left(2 W_{i}\right)_{H}\right| \geq 3|H|-2$ for all $i \in[1,2]$. By the same lines of the proof of SUBCASE 1.1, we get a contradiction to $S \in \mathcal{A}(G)$.
SUBCASE 2.2. H is trivial.
Since $\ell=\frac{\left|W^{\prime}\right|}{2} \geq n-1$, it follows that $\mathrm{v}_{g}\left(2 W^{\prime}\right)=\mathrm{v}_{g}\left(\phi_{H}\left(2 W^{\prime}\right)\right) \geq\left|W^{\prime}\right|+$ $2-n \geq \ell+1$, and by A2,

$$
\mathrm{h}(2 W)=\mathrm{v}_{2 \bar{x}}(2 W)=\mathrm{v}_{2 \bar{x}}\left(2 W_{1}\right)+\mathrm{v}_{2 \bar{x}}\left(2 W_{2}\right) \leq(\ell+2)+1=\ell+3
$$

Thus we have $\mathrm{v}_{2 \bar{x}}\left(2 W^{\prime}\right) \leq \mathrm{v}_{2 \bar{x}}(2 W)-2 \leq \ell+1$.

Suppose that $\ell=1$. Then $|W|=6, n=2$, and $\left|2 W^{\prime}\right|=2$. Hence $\mathrm{v}_{g}\left(2 W^{\prime}\right)=$ 2 and $W=\bar{x}^{[2]} \cdot \bar{y}^{[2]} \cdot \overline{w_{1}} \cdot \overline{w_{2}}$ for some $\overline{w_{1}}, \overline{w_{2}} \in \mathbb{Z} / 2 n \mathbb{Z}$ with $2 \overline{w_{1}}=2 \overline{w_{2}}=g$. If $\overline{w_{1}}=\overline{w_{2}}+\bar{n}$, then $\psi\left(\overline{w_{1}} \cdot \overline{w_{2}}\right)$ and $\psi\left(\bar{x}^{[2]} \cdot \bar{y}^{[2]}\right)$ are both product-one sequences, a contradiction. Therefore $\overline{w_{1}}=\overline{w_{2}}$. Since ord $\left(\alpha^{i} \tau\right)=4$ for all $i \in[0,2 n-1]$ and $\psi(W)$ is a product-one sequence, we obtain that $\left|\left\{\bar{x}, \bar{y}, \overline{w_{1}}\right\}\right| \geq 2$. Since $\mathrm{v}_{\bar{x}}(W)=\mathrm{h}(W) \geq 3$ and $\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right) \geq 2$, it follows that either $\bar{x}=\bar{y}$ or $\bar{x}=\overline{w_{1}}$. Since $\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)+\left|W_{1}\right| \bar{n}$, we have

$$
W=W_{1} \cdot W_{2}=\bar{x}^{[3]} \cdot\left(\bar{x} \cdot \bar{w}^{[2]}\right)
$$

for some $\bar{w} \in \mathbb{Z} / 4 \mathbb{Z}$ with $2 \bar{w} \neq 2 \bar{x}$. Thus $\psi(W)$ is the desired sequence for (b).
Suppose that $\ell \geq 2$. We assume to the contrary that $\mathrm{v}_{\bar{y}}\left(W_{2}\right) \geq 3$ and $\mathrm{h}(W) \leq \ell+2$. Since $\mathrm{v}_{2 \bar{x}}(2 W)=\mathrm{v}_{\bar{x}}(W) \leq \ell+2$, it follows that $\mathrm{v}_{2 \bar{x}}\left(2 W^{\prime}\right) \leq \ell$, whence $g \neq 2 \bar{x}$. In view of $\mathrm{v}_{\bar{x}}\left(W_{1}\right) \geq 2, \mathrm{v}_{\bar{y}}\left(W_{2}\right) \geq 2$, and $\mathbf{A 2}$, we must have $2 \bar{y} \neq 2 \bar{x}$. Let $g=2 \bar{z}$ for some $\bar{z} \in \mathbb{Z} / 2 n \mathbb{Z}$. If $g \neq 2 \bar{y}$, then by the main case hypothesis, \bar{x}, \bar{y} and \bar{z} are all distinct elements with $\mathrm{v}_{\bar{x}}(W) \geq \mathrm{v}_{\bar{z}}(W) \geq \ell+1$ and $v_{\bar{y}}(W) \geq 3$, implying $2 \ell+4=|W| \geq 2(\ell+1)+3=2 \ell+5$, a contradiction. Thus $g=2 \bar{y}$, and again by the main case hypothesis, we have $\bar{z}=\bar{y}$. Hence $\mathrm{v}_{\bar{y}}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)=\mathrm{v}_{\bar{z}}\left(W^{\prime}\right)+2 \geq \ell+3$, contradicting that $\mathrm{h}(W) \leq \ell+2$.

Therefore $\mathrm{v}_{\bar{y}}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)=\mathrm{h}\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)$, and in view of the main case hypothesis, we have

$$
3 \leq \ell+1 \leq \mathrm{v}_{g}\left(2 W^{\prime}\right) \leq \mathrm{v}_{2 \bar{y}}\left(2\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)\right) \leq \mathrm{v}_{2 \bar{x}}(2 W)
$$

Then it follows by $|2 W|=2 \ell+4$ and $h(2 W) \leq \ell+3$ that $|\{2 \bar{x}, 2 \bar{y}, g\}|=2$. If $2 \bar{y}=g$, then $2 \bar{x} \neq 2 \bar{y}$ and $\mathrm{v}_{2 \bar{x}}(2 W) \geq \mathrm{v}_{2 \bar{y}}(2 W) \geq \ell+3$, whence $2 \ell+4=$ $|2 W| \geq 2 \ell+6$, a contradiction. Thus $2 \bar{y} \neq g$.

If $2 \bar{x}=2 \bar{y}$, then $\mathrm{v}_{2 \bar{x}}(2 W)=2+\mathrm{v}_{2 \bar{y}}\left(2\left(W \cdot(\bar{x} \cdot \bar{x})^{[-1]}\right)\right) \geq \ell+3$ implies that $\mathrm{v}_{2 \bar{x}}(2 W)=\ell+3$ and $\mathrm{v}_{g}\left(2 W^{\prime}\right)=\ell+1$. If $|W| \geq 2 n+4$, then $\ell \geq n$, and hence $\ell+1=\mathrm{v}_{g}\left(2 W^{\prime}\right) \geq\left|W^{\prime}\right|+2-n \geq \ell+2$, a contradiction. Thus $|W|=2 n+2$ and $\ell=n-1$. Since $\mathrm{v}_{\bar{x}}\left(W_{1}\right) \geq \mathrm{v}_{\bar{x}}\left(W_{2}\right)$, we have $\mathrm{v}_{2 \bar{x}}\left(2 W_{1}\right) \geq \mathrm{v}_{2 \bar{x}}\left(2 W_{2}\right)$, and hence A2 ensures that $\mathrm{v}_{2 \bar{x}}\left(2 W_{2}\right)=1$. It follows in view of the main case hypothesis that

$$
W=W_{1} \cdot W_{2}=\bar{x}^{[n+1]} \cdot\left(\bar{x} \cdot \bar{z}^{[n]}\right)
$$

where $\bar{z} \in \mathbb{Z} / 2 n \mathbb{Z}$ with $2 \bar{z}=g \neq 2 \bar{x}$. Since $\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)+\left|W_{1}\right| \bar{n}$, we have $n z+x \equiv(n+1)(x+n)(\bmod 2 n)$. Therefore $\psi(W)$ is the desired sequence for (b).

If $2 \bar{x}=g$, then $\mathrm{v}_{2 \bar{x}}(2 W) \geq 2+\mathrm{v}_{g}\left(2 W^{\prime}\right) \geq \ell+3$ implies that $\mathrm{v}_{2 \bar{x}}(2 W)=$ $\ell+3$ and $\mathrm{v}_{2 \bar{y}}(2 W)=\ell+1$. The same argument as shown above ensures that $W=W_{1} \cdot W_{2}=\bar{x}^{[n+1]} \cdot\left(\bar{x} \cdot \bar{y}^{[n]}\right)$, where $\bar{x}, \bar{y} \in \mathbb{Z} / 2 n \mathbb{Z}$ with $2 \bar{x} \neq 2 \bar{y}$, and $n y+x \equiv(n+1)(x+n)(\bmod 2 n)$. Thus $\psi(W)$ is the desired sequence for (b).

To prove the "In particular" statement, we assume to the contrary that there exists a minimal product-one sequence S such that $S=S_{1} \cdot S_{2}$, where $S_{1} \in$ $\mathcal{F}(\langle\alpha\rangle)$ and $S_{2} \in \mathcal{F}(G \backslash\langle\alpha\rangle)$ of length $\left|S_{2}\right| \geq 2 n+4$. Then we suppose that $S_{2}=$ $\prod_{i \in\left[1,\left|S_{2}\right|\right]}^{\bullet} \alpha^{x_{i}} \tau$ and $S_{1}=T_{1} \cdot T_{2}$ such that $\pi^{*}\left(T_{1}\right)\left(\alpha^{x_{1}} \tau\right) \pi^{*}\left(T_{2}\right)\left(\alpha^{x_{2}} \tau \cdots \alpha^{x_{\left|S_{2}\right|}} \tau\right)$
$=1_{G}$. Since $S \in \mathcal{A}(G)$, it follows that

$$
S^{\prime \prime}=\left(\pi^{*}\left(T_{1}\right) \alpha^{x_{1}} \tau\right) \cdot\left(\pi^{*}\left(T_{2}\right) \alpha^{x_{2}} \tau\right) \cdot\left(\prod_{i \in\left[3,\left|S_{2}\right|\right]}^{\bullet} \alpha^{x_{i}} \tau\right) \in \mathcal{A}(G \backslash\langle\alpha\rangle)
$$

and $\left|S^{\prime \prime}\right|=\left|S_{2}\right| \geq 2 n+4$, a contradiction to the main statement.

4. The main results

Theorem 4.1. Let G be a dihedral group of order $2 n$, where $n \in \mathbb{N}_{\geq 3}$ is odd. A sequence S over G of length $\mathrm{D}(G)$ is a minimal product-one sequence if and only if it has one of the following two forms:
(a) There exist $\alpha, \tau \in G$ such that $G=\langle\alpha, \tau| \alpha^{n}=\tau^{2}=1_{G} \quad$ and $\quad \tau \alpha=$ $\left.\alpha^{-1} \tau\right\rangle$ and $S=\alpha^{[2 n-2]} \cdot \tau^{[2]}$.
(b) There exist $\alpha, \tau \in G$ and $i, j \in[0, n-1]$ with $\operatorname{gcd}(i-j, n)=1$ such that $G=\langle\alpha, \tau| \alpha^{n}=\tau^{2}=1_{G}$ and $\left.\tau \alpha=\alpha^{-1} \tau\right\rangle$ and $S=\left(\alpha^{i} \tau\right)^{[n]} \cdot\left(\alpha^{j} \tau\right)^{[n]}$.

Proof. We fix $\alpha, \tau \in G$ such that $G=\langle\alpha, \tau| \alpha^{n}=\tau^{2}=1_{G}$ and $\left.\tau \alpha=\alpha^{-1} \tau\right\rangle$. Then

$$
G=\left\{\alpha^{i} \mid i \in[0, n-1]\right\} \cup\left\{\alpha^{i} \tau \mid i \in[0, n-1]\right\} .
$$

Let $G_{0}=G \backslash\langle\alpha\rangle$. If $\left|S_{G_{0}}\right|=0$, then $S \in \mathcal{F}(\langle\alpha\rangle)$, and since $|S|=2 n>\mathrm{D}(\langle\alpha\rangle)=$ n, it follows that S is not a minimal product-one sequence, a contradiction. Since S is a product-one sequence, we have that $\left|S_{G_{0}}\right|$ is even. We distinguish three cases depending on $\left|S_{G_{0}}\right|$.
CASE 1. $\left|S_{G_{0}}\right|=2$.
Then we may assume by changing generating set if necessary that $S=$ $T_{1} \cdot \tau \cdot T_{2} \cdot\left(\alpha^{x} \tau\right)$ with $\pi^{*}\left(T_{1}\right)(\tau) \pi^{*}\left(T_{2}\right)\left(\alpha^{x} \tau\right)=1_{G}$, where $x \in[0, n-1]$ and $T_{1}, T_{2} \in \mathcal{F}(\langle\alpha\rangle)$. Since $S \in \mathcal{A}(G)$, it follows that T_{1} and T_{2} must be both product-one free sequences, and thus $\left|T_{1}\right|=\left|T_{2}\right|=n-1$. Then we may assume by Lemma 2.2 .1 that

$$
T_{1}=\alpha^{[n-1]} \quad \text { and } \quad T_{2}=\left(\alpha^{j}\right)^{[n-1]}
$$

where $j \in[0, n-1]$ with $\operatorname{gcd}(j, n)=1$. Since $\pi^{*}\left(T_{1}\right)(\tau) \pi^{*}\left(T_{2}\right)\left(\alpha^{x} \tau\right)=1_{G}$, it follows that $-1 \equiv-j+x(\bmod n)$, and thus it suffices to show that $x=0$; Indeed, if this holds, then $j=1$, whence $S=\alpha^{[2 n-2]} \cdot \tau^{[2]}$ which is the desired sequence for (a).

Assume to the contrary that $x \in[1, n-1]$ so that $j \neq 1$.
SUBCASE 1.1. j is even.
Let $S_{1}=\alpha^{j} \cdot \alpha^{[n-j]} \in \mathcal{B}(G)$. Since j is even and n is odd, $-1 \equiv-j+x$ $(\bmod n)$ implies that

$$
S_{2}=\alpha^{\left[\frac{j-2}{2}\right]} \cdot\left(\alpha^{j}\right)^{\left[\frac{n-3}{2}\right]} \cdot\left(\alpha^{j} \cdot \tau\right) \cdot \alpha^{\left[\frac{j-2}{2}\right]} \cdot\left(\alpha^{j}\right)^{\left[\frac{n-3}{2}\right]} \cdot\left(\alpha \cdot \alpha^{x} \tau\right) \in \mathcal{B}(G)
$$

whence $S=S_{1} \cdot S_{2}$ contradicts that $S \in \mathcal{A}(G)$.
SUBCASE 1.2. j is odd.

Since $-1 \equiv-j+x(\bmod n)$, we obtain that $x=j-1$, whence x is even. Then $n-1-x$ is even, and we obtain that

$$
\left(\alpha^{\left[\frac{n-1-x}{2}\right]}\left(\alpha^{j}\right)^{\left[\frac{n-1}{2}\right]} \alpha^{[x]}\right) \tau\left(\alpha^{\left[\frac{n-1-x}{2}\right]}\left(\alpha^{j}\right)^{\left[\frac{n-1}{2}\right]}\right) \alpha^{x} \tau=1_{G}
$$

Let $S_{1}=\alpha^{\left[\frac{n-1-x}{2}\right]} \cdot\left(\alpha^{j}\right)^{\left[\frac{n-1}{2}\right]} \cdot \alpha^{[x]} \in \mathcal{F}(\langle\alpha\rangle)$. Since x is even, it follows that $\left|S_{1}\right|=n-1+\frac{x}{2} \geq n$, and hence S_{1} has a product-one subsequence W. Thus W and $S \cdot W^{[-1]}$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$.
CASE 2. $\left|S_{G_{0}}\right| \in[4,2 n-2]$.
Then we may assume by changing generating set if necessary that $S=T_{1} \cdot \tau$. $T_{2} \cdot T_{3} \cdot\left(\alpha^{x} \tau\right)$, where $x \in[0, n-1], T_{1}, T_{2} \in \mathcal{F}(\langle\alpha\rangle)$, and $T_{3} \in \mathcal{F}\left(G_{0}\right)$ with $\left|T_{3}\right|=$ $\left|S_{G_{0}}\right|-2$. Moreover, we suppose that $\pi^{*}\left(T_{1}\right)(\tau) \pi^{*}\left(T_{2} \cdot T_{3}^{\prime}\right)\left(\alpha^{x} \tau\right)=1_{G}$, where $T_{3}=\prod_{i \in\left[1,\left|T_{3}\right|\right]}^{\bullet} g_{i}$ is an ordered sequence and $T_{3}^{\prime}=\prod_{i \in\left[1,\left|T_{3}\right| / 2\right]}^{\bullet}\left(g_{2 i-1} g_{2 i}\right) \in$ $\mathcal{F}(\langle\alpha\rangle)$. Then T_{1} and $T_{2} \cdot T_{3}^{\prime}$ are both product-one free sequences and

$$
\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right|=\left(2 n-\left|S_{G_{0}}\right|\right)+\frac{\left|S_{G_{0}}\right|-2}{2} \geq n
$$

Let $T_{1}=p_{1} \cdot \ldots \cdot p_{\left|T_{1}\right|}, T_{2}=f_{1} \cdot \ldots \cdot f_{\left|T_{2}\right|}$, and $T_{3}^{\prime}=q_{1} \cdot \ldots \cdot q_{\left|T_{3}^{\prime}\right|}$. Then we consider

- $H_{1}=\left\{p_{1}, p_{1} p_{2}, \ldots,\left(p_{1} \cdots p_{\left|T_{1}\right|}\right)\right\}$, and
- $H_{2}=\left\{q_{1}, q_{1} q_{2}, \ldots,\left(q_{1} \cdots q_{\left|T_{3}^{\prime}\right|}\right),\left(q_{1} \cdots q_{\left|T_{3}^{\prime}\right|} f_{1}\right),\left(q_{1} \cdots q_{\left|T_{3}^{\prime}\right|} f_{1} f_{2}\right)\right.$, $\left.\left(q_{1} \cdots q_{\left|T_{3}^{\prime}\right|} f_{1} f_{2} f_{3}\right), \ldots,\left(q_{1} \cdots q_{\left|T_{3}^{\prime}\right|} f_{1} \cdots f_{\left|T_{2}\right|}\right)\right\}$.
Since both T_{1} and $T_{2} \cdot T_{3}^{\prime}$ are product-one free, it follows that $H_{1}, H_{2} \subset\langle\alpha\rangle \backslash\left\{1_{G}\right\}$ with $\left|H_{1}\right|=\left|T_{1}\right|,\left|H_{2}\right|=\left|T_{2} \cdot T_{3}^{\prime}\right|$, and $\left|H_{1}\right|+\left|H_{2}\right|=\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right| \geq n$. Since $|\langle\alpha\rangle|=n$, we obtain that $H_{1} \cap H_{2} \neq \emptyset$, and hence we infer that there exist $W_{1}\left|T_{1}, W_{2}\right| T_{2}$, and $W_{3}^{\prime} \mid T_{3}^{\prime}$ such that W_{3}^{\prime} is a non-trivial sequence and $\pi^{*}\left(W_{1}\right)=\pi^{*}\left(W_{2} \cdot W_{3}^{\prime}\right)$. Let W_{3} denote the corresponding subsequence of T_{3} and assume that $W_{3}=\left(\alpha^{y_{1}} \tau\right) \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$. Then $Z=W_{2} \cdot\left(\alpha^{y_{1}} \tau\right) \cdot W_{1} \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$ and $S \cdot Z^{[-1]}$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$.
CASE 3. $\left|S_{G_{0}}\right|=2 n$.
Since $|S|=2 n=\left|S_{G_{0}}\right|$, we may assume that
$S=\alpha^{k_{1}} \tau \cdot \alpha^{\ell_{1}} \tau \cdot \ldots \cdot \alpha^{k_{n}} \tau \cdot \alpha^{\ell_{n}} \tau \quad$ with $\quad \alpha^{k_{1}} \tau \alpha^{\ell_{1}} \tau \cdots \alpha^{k_{n}} \tau \alpha^{\ell_{n}} \tau=1_{G}$,
where $k_{1}, \ldots, k_{n}, \ell_{1}, \ldots, \ell_{n} \in[0, n-1]$. Then we set $S^{\prime}=a^{k_{1}-\ell_{1}} \cdot \ldots \cdot a^{k_{n}-\ell_{n}} \in$ $\mathcal{B}(\langle\alpha\rangle)$ of length $\left|S^{\prime}\right|=n$. Since $S \in \mathcal{A}(G)$, it follows that $S^{\prime} \in \mathcal{A}(\langle\alpha\rangle)$, and by applying Lemma 2.2.1,

$$
\begin{equation*}
k_{1}-\ell_{1} \equiv k_{2}-\ell_{2} \equiv \cdots \equiv k_{n}-\ell_{n} \quad(\bmod n) \tag{4.1}
\end{equation*}
$$

with $\operatorname{gcd}\left(k_{i}-\ell_{i}, n\right)=1$ for all $i \in[1, n]$. Let $j \in[1, n-1]$. Then we observe that

$$
\alpha^{k_{j}} \tau \alpha^{\ell_{j}} \tau \alpha^{k_{j+1}} \tau=\alpha^{k_{j}-\ell_{j}+k_{j+1}} \tau=\alpha^{k_{j+1}} \tau \alpha^{\ell_{j}} \tau \alpha^{k_{j}} \tau
$$

By swapping the role between $\alpha^{k_{j}} \tau$ and $\alpha^{k_{j+1}} \tau$, we obtain that

$$
S^{\prime \prime}=\alpha^{k_{1}-\ell_{1}} \cdot \ldots \cdot \alpha^{k_{j+1}-\ell_{j}} \cdot \alpha^{k_{j}-\ell_{j+1}} \cdot \ldots \cdot \alpha^{k_{n}-\ell_{n}} \in \mathcal{A}(\langle\alpha\rangle)
$$

of length $\left|S^{\prime \prime}\right|=n$. Hence it follows again by applying Lemma 2.2.1 that

$$
k_{1}-\ell_{1} \equiv \cdots \equiv k_{j+1}-\ell_{j} \equiv k_{j}-\ell_{j+1} \equiv \cdots \equiv k_{n}-\ell_{n} \quad(\bmod n),
$$

and thus (4.1) ensures that $k_{j}=k_{j+1}$, whence $k_{1}=k_{2}=\cdots=k_{n}$. Similarly we also obtain that $\ell_{1}=\ell_{2}=\cdots=\ell_{n}$, whence $S=\left(\alpha^{k_{1}} \tau\right)^{[n]} \cdot\left(\alpha^{\ell_{1}} \tau\right)^{[n]}$ with $\operatorname{gcd}\left(k_{1}-\ell_{1}, n\right)=1$, which is the desired sequence for (b).

Theorem 4.2. Let G be a dihedral group of order $2 n$, where $n \in \mathbb{N}_{\geq 4}$ is even. A sequence S over G of length $\mathrm{D}(G)$ is a minimal product-one sequence if and only if there exist $\alpha, \tau \in G$ such that $G=\langle\alpha, \tau| \alpha^{n}=\tau^{2}=1_{G} \quad$ and $\left.\quad \tau \alpha=\alpha^{-1} \tau\right\rangle$ and $S=\alpha^{\left[n+\frac{n}{2}-2\right]} \cdot \tau \cdot\left(\alpha^{\frac{n}{2}} \tau\right)$.
Proof. We fix $\alpha, \tau \in G$ such that $G=\langle\alpha, \tau| \alpha^{n}=\tau^{2}=1_{G}$ and $\left.\tau \alpha=\alpha^{-1} \tau\right\rangle$. Then

$$
G=\left\{\alpha^{i} \mid i \in[0, n-1]\right\} \cup\left\{\alpha^{i} \tau \mid i \in[0, n-1]\right\}
$$

Let $G_{0}=G \backslash\langle\alpha\rangle$. If $\left|S_{G_{0}}\right|=0$, then $S \in \mathcal{F}(\langle\alpha\rangle)$, and since $|S|=n+$ $\frac{n}{2}>\mathrm{D}(\langle\alpha\rangle)=n$, it follows that S is not a minimal product-one sequence, a contradiction. Since S is a product-one sequence, Proposition 3.2 ensures that $\left|S_{G_{0}}\right| \in[2, n]$ is even. We distinguish two cases depending on $\left|S_{G_{0}}\right|$.
CASE 1. $\left|S_{G_{0}}\right|=2$.
Then we may assume by changing generating set if necessary that $S=$ $T_{1} \cdot \tau \cdot T_{2} \cdot\left(\alpha^{x} \tau\right)$ with $\pi^{*}\left(T_{1}\right)(\tau) \pi^{*}\left(T_{2}\right)\left(\alpha^{x} \tau\right)=1_{G}$, where $x \in[0, n-1]$ and $T_{1}, T_{2} \in \mathcal{F}(\langle\alpha\rangle)$. Since $S \in \mathcal{A}(G)$, it follows that T_{1} and T_{2} must be both product-one free sequences.

If $\left|T_{1}\right| \geq \frac{n}{2}$ and $\left|T_{2}\right| \geq \frac{n}{2}$, then T_{1}^{2} and $T_{2}^{2} \in \mathcal{F}\left(\left\langle\alpha^{2}\right\rangle\right)$ (see (3.1)) with $\left|T_{1}^{2}\right| \geq \frac{n}{2}$ and $\left|T_{2}^{2}\right| \geq \frac{n}{2}$, and it follows by $\mathrm{D}\left(\left\langle\alpha^{2}\right\rangle\right)=\frac{n}{2}$ that there exist $W_{1} \mid T_{1}$ and $W_{2} \mid T_{2}$ such that W_{1}^{2} and W_{2}^{2} are product-one sequences over $\left\langle\alpha^{2}\right\rangle$. Since T_{1} and T_{2} are product-one free, we obtain that $\pi^{*}\left(W_{1}\right)=\alpha^{\frac{n}{2}}=\pi^{*}\left(W_{2}\right)$. Therefore $W_{1} \cdot W_{2}$ and $S \cdot\left(W_{1} \cdot W_{2}\right)^{[-1]}$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$.

Thus either $\left|T_{1}\right| \leq \frac{n}{2}-1$ or $\left|T_{2}\right| \leq \frac{n}{2}-1$, and we may assume that $\left|T_{1}\right|=\frac{n}{2}-1$ and $\left|T_{2}\right|=n-1$. Then Lemma 2.2.1 implies that $T_{2}=\left(\alpha^{j}\right)^{[n-1]}$ for some odd $j \in[1, n-1]$. Then we may assume by changing generating set if necessary that $j=1$ so that $S=T_{3} \cdot \tau \cdot \alpha^{[n-1]} \cdot\left(\alpha^{y} \tau\right)$, where $y \in[0, n-1]$ and $T_{3} \in \mathcal{F}(\langle\alpha\rangle)$. Since $T_{3} \cdot \alpha \cdot \tau \cdot\left(\alpha^{y} \tau\right)$ is a product-one sequence, we have that

$$
T_{3} \cdot \alpha^{\left[\frac{n}{2}\right]} \cdot \tau \cdot \alpha^{\left[\frac{n}{2}-1\right]} \cdot\left(\alpha^{y} \tau\right) \in \mathcal{B}(G)
$$

It follows that $T_{3} \cdot \alpha^{\left[\frac{n}{2}\right]}$ is a product-one free sequence of length $n-1$, and again by Lemma 2.2 .1 that $T_{3}=\alpha^{\left[\frac{n}{2}-1\right]}$. Since $\left(\frac{n}{2}-1\right) \equiv(n-1)+y(\bmod n)$, we infer that $y=\frac{n}{2}$, and the assertion follows.
CASE 2. $\left|S_{G_{0}}\right| \in[4, n]$.
SUBCASE 2.1. $n=4$.

Then we may assume by changing generating set if necessary that $S=$ $\alpha^{r_{1}} \cdot \alpha^{r_{2}} \cdot \tau \cdot \alpha^{x} \tau \cdot \alpha^{y} \tau \cdot \alpha^{z} \tau$ for some $r_{1}, r_{2} \in[1,3]$ and $x, y, z \in[0,3]$. If $\alpha^{r_{1}} \alpha^{r_{2}} \tau \alpha^{x} \tau \alpha^{y} \tau \alpha^{z} \tau=1_{G}$, then $S^{\prime}=\alpha^{r_{1}} \cdot \alpha^{r_{2}} \cdot \alpha^{-x} \cdot \alpha^{y-z} \in \mathcal{A}(\langle\alpha\rangle)$, and hence it follows by applying Lemma 2.2.1 that $r_{1} \equiv r_{2} \equiv-x \equiv y-z \equiv j$ $(\bmod 4)$ for some odd $j \in[1,3]$. Thus $S=S_{1} \cdot S_{2}$, where $S_{1}=\tau \cdot \alpha^{r_{1}} \cdot \alpha^{x} \tau$ and $S_{2}=\alpha^{y} \tau \cdot \alpha^{r_{2}} \cdot \alpha^{z} \tau$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Thus we can assume that $\alpha^{r_{1}} \tau \alpha^{r_{2}} \alpha^{x} \tau \alpha^{y} \tau \alpha^{z} \tau=1_{G}$, and we consider

$$
S^{\prime \prime}=\alpha^{r_{1}} \cdot \alpha^{-r_{2}} \cdot \tau \cdot \alpha^{x} \tau \cdot \alpha^{y} \tau \cdot \alpha^{z} \tau \in \mathcal{B}(G)
$$

Then, by the same argument as shown above, we obtain that $S^{\prime \prime} \notin \mathcal{A}(G)$. Let $S^{\prime \prime}=U_{1} \cdot U_{2}$ for some $U_{1}, U_{2} \in \mathcal{B}(G)$. Since S is a minimal product-one sequence, we must have that

$$
U_{1}=\alpha^{r_{1}} \cdot \alpha^{-r_{2}} \quad \text { and } \quad U_{2}=\tau \cdot \alpha^{x} \tau \cdot \alpha^{y} \tau \cdot \alpha^{z} \tau
$$

are both minimal product-one sequences, whence we obtain that $r_{1}=r_{2}$. Since $U_{2} \in \mathcal{A}(G)$, Proposition 3.2 implies that

$$
U_{2}=\tau \cdot \alpha \tau \cdot \alpha^{2} \tau \cdot \alpha^{3} \tau \quad \text { or } \quad U_{2}=\left(\alpha^{x_{1}} \tau\right)^{[2]} \cdot \alpha^{y_{1}} \tau \cdot \alpha^{y_{1}+2} \tau
$$

where $x_{1}, y_{1} \in[0,3]$ with $x_{1} \equiv y_{1}+1(\bmod 2)$. Since $S \in \mathcal{A}(G)$, we obtain that either $r_{1}=r_{2}=1$ or $r_{1}=r_{2}=3$. If $r_{1}=r_{2}=1$, then
$S=(\alpha \cdot \tau \cdot \alpha \tau) \cdot\left(\alpha \cdot \alpha^{2} \tau \cdot \alpha^{3} \tau\right) \quad$ or $\quad S=\left(\alpha \cdot \alpha^{x_{1}} \tau \cdot \alpha^{y_{1}} \tau\right) \cdot\left(\alpha^{x_{1}} \tau \cdot \alpha \cdot \alpha^{y_{1}+2} \tau\right)$, contradicting that $S \in \mathcal{A}(G)$. If $r_{1}=r_{3}=3$, then
$S=\left(\tau \cdot \alpha^{3} \cdot \alpha \tau\right) \cdot\left(\alpha^{2} \tau \cdot \alpha^{3} \cdot \alpha^{3} \tau\right) \quad$ or $\quad S=\left(\alpha^{3} \cdot \alpha^{x_{1}} \tau \cdot \alpha^{y_{1}} \tau\right) \cdot\left(\alpha^{x_{1}} \tau \cdot \alpha^{3} \cdot \alpha^{y_{1}+2} \tau\right)$, contradicting that $S \in \mathcal{A}(G)$.
SUBCASE 2.2. $n \geq 6$.
Then we may assume by changing generating set if necessary that $S=$ $T_{1} \cdot \tau \cdot T_{2} \cdot T_{3} \cdot\left(\alpha^{x} \tau\right)$, where $x \in[0, n-1], T_{1}, T_{2} \in \mathcal{F}(\langle\alpha\rangle)$ with $\left|T_{2}\right| \geq$ $\left|T_{1}\right| \geq 0$, and $T_{3} \in \mathcal{F}\left(G_{0}\right)$ with $\left|T_{3}\right|=\left|S_{G_{0}}\right|-2$. Moreover, we suppose that $\pi^{*}\left(T_{1}\right)(\tau) \pi^{*}\left(T_{2} \cdot T_{3}^{\prime}\right)\left(\alpha^{x} \tau\right)=1_{G}$, where $T_{3}=\prod_{i \in\left[1,\left|T_{3}\right|\right]}^{\bullet} g_{i}$ is an ordered sequence and $T_{3}^{\prime}=\prod_{i \in\left[1,\left|T_{3}\right| / 2\right]}^{\bullet}\left(g_{2 i-1} g_{2 i}\right) \in \mathcal{F}(\langle\alpha\rangle)$. Then T_{1} and $T_{2} \cdot T_{3}^{\prime}$ are both product-one free sequences and

$$
\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right|=\left(n+\frac{n}{2}-\left|S_{G_{0}}\right|\right)+\frac{\left|S_{G_{0}}\right|-2}{2} \geq n-1 .
$$

If $\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right| \geq n$, then we infer that there exist subsequences $W_{1}\left|T_{1}, W_{2}\right| T_{2}$, and $W_{3}^{\prime} \mid T_{3}^{\prime}$ such that W_{3}^{\prime} is a non-trivial sequence (this follows by the same argument as used in CASE 2 of Theorem 4.1) and $\pi^{*}\left(W_{1}\right)=\pi^{*}\left(W_{2} \cdot W_{3}^{\prime}\right)$. Let W_{3} denote the corresponding subsequence of T_{3} and assume that $W_{3}=$ $\left(\alpha^{y_{1}} \tau\right) \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$. Then $Z=W_{2} \cdot\left(\alpha^{y_{1}} \tau\right) \cdot W_{1} \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$ and $S \cdot Z^{[-1]}$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$.

Suppose that $\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right|=n-1$. Then $\left|T_{3}^{\prime}\right|=\frac{n}{2}-1$ and $\left|T_{2}\right| \geq \frac{n}{4}$. Since $T_{2} \cdot T_{3}^{\prime}$ is a product-one free sequence with $\left|T_{2} \cdot T_{3}^{\prime}\right| \geq \frac{3 n}{4}-1 \geq \frac{n+1}{2}$, it follows by Lemma 2.2 that $T_{2} \cdot T_{3}^{\prime}$ is g-smooth for some $g \in\langle\alpha\rangle$ with $\operatorname{ord}(g)=n$, and
for every $z \in \Pi\left(T_{2} \cdot T_{3}^{\prime}\right)$, there exists a subsequence $W \mid T_{2} \cdot T_{3}^{\prime}$ with $g \mid W$ such that $\pi^{*}(W)=z$. Since $\left|T_{3}^{\prime}\right|=\frac{n}{2}-1$, Lemma 2.2.3 implies that $g \mid T_{3}^{\prime}$.

If $\Pi\left(T_{1}\right) \cap \Pi\left(T_{2} \cdot T_{3}^{\prime}\right) \neq \emptyset$, then there exist subsequences $W_{1}\left|T_{1}, W_{2}\right| T_{2}$, and $W_{3}^{\prime} \mid T_{3}^{\prime}$ such that W_{3}^{\prime} is a non-trivial sequence (this follows from the above paragraph that we can choose $W_{2} \cdot W_{3}^{\prime} \mid T_{2} \cdot T_{3}^{\prime}$ such that $g \mid W_{2} \cdot W_{3}^{\prime}$ and $\left.g \mid T_{3}^{\prime}\right)$ and $\pi^{*}\left(W_{1}\right)=\pi^{*}\left(W_{2} \cdot W_{3}^{\prime}\right)$. Let W_{3} denote the corresponding subsequence of T_{3} and assume that $W_{3}=\left(\alpha^{y_{1}} \tau\right) \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$. Then $Z=W_{2} \cdot\left(\alpha^{y_{1}} \tau\right) \cdot W_{1} \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$ and $S \cdot Z^{[-1]}$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Hence $\Pi\left(T_{1}\right) \cap \Pi\left(T_{2} \cdot T_{3}^{\prime}\right)=\emptyset$, and it follows that $T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}$ is a product-one free sequence of length $n-1$. By Lemma 2.2.1, there exists an odd $j \in[1, n-1]$ such that

$$
T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}=\left(\alpha^{j}\right)^{[n-1]},
$$

and we may assume by changing generating set if necessary that $j=1$ so that $x=1$. If $\left|T_{1}\right| \geq 1$, then

$$
\left(\alpha \cdot \alpha^{-1}\right)^{\left[\left|T_{1}\right|\right]} \quad \text { and } \quad \alpha^{\left[1+\frac{n-2-2\left|T_{1}\right|}{2}\right]} \cdot \tau \cdot \alpha^{\left[\frac{n-2-2\left|T_{1}\right|}{2}\right]} \cdot \alpha \tau
$$

are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Thus $\left|T_{1}\right|=0$, and then we obtain that $T_{3}=\left(\alpha^{r+1} \tau \cdot \alpha^{r} \tau\right)^{\left[\frac{n}{2}-1\right]}$ for some $r \in[0, n-1]$ (this follows by the swapping argument as used in CASE 3 of Theorem 4.1). This implies that $S=(\alpha \cdot \tau \cdot \alpha \tau) \cdot\left(\alpha^{r+1} \tau \cdot \alpha \cdot \alpha^{r} \tau\right)^{\left[\frac{n}{2}-1\right]}$, contradicting that $S \in \mathcal{A}(G)$.

Theorem 4.3. Let G be a dicyclic group of order $4 n$, where $n \geq 2$. A sequence S over G of length $\mathrm{D}(G)$ is a minimal product-one sequence if and only if there exist $\alpha, \tau \in G$ such that $G=\langle\alpha, \tau| \alpha^{2 n}=1_{G}, \tau^{2}=\alpha^{n}$, and $\left.\tau \alpha=\alpha^{-1} \tau\right\rangle$ and $S=\alpha^{[3 n-2]} \cdot \tau^{[2]}$.

Proof. We fix $\alpha, \tau \in G$ such that $G=\langle\alpha, \tau| \alpha^{2 n}=1_{G}, \tau^{2}=\alpha^{n}$, and $\tau \alpha=$ $\left.\alpha^{-1} \tau\right\rangle$. Then

$$
G=\left\{\alpha^{i} \mid i \in[0,2 n-1]\right\} \cup\left\{\alpha^{i} \tau \mid i \in[0,2 n-1]\right\} .
$$

Let $G_{0}=G \backslash\langle\alpha\rangle$. If $\left|S_{G_{0}}\right|=0$, then $S \in \mathcal{F}(\langle\alpha\rangle)$, and since $|S|=3 n>\mathrm{D}(\langle\alpha\rangle)=$ $2 n$, it follows that S is not a minimal product-one sequence, a contradiction. Since S is a product-one sequence, Proposition 3.3 ensures that $\left|S_{G_{0}}\right| \in[2,2 n+$ 2] is even. We distinguish two cases depending on $\left|S_{G_{0}}\right|$.
CASE 1. $\left|S_{G_{0}}\right|=2$.
Then we may assume by changing generating set if necessary that $S=$ $T_{1} \cdot \tau \cdot T_{2} \cdot\left(\alpha^{x} \tau\right)$ with $\pi^{*}\left(T_{1}\right)(\tau) \pi^{*}\left(T_{2}\right)\left(\alpha^{x} \tau\right)=1_{G}$, where $x \in[0,2 n-1]$ and $T_{1}, T_{2} \in \mathcal{F}(\langle\alpha\rangle)$. Since $S \in \mathcal{A}(G)$, it follows that T_{1} and T_{2} must be both product-one free sequences.

If $\left|T_{1}\right| \geq n$ and $\left|T_{2}\right| \geq n$, then T_{1}^{2} and $T_{2}^{2} \in \mathcal{F}\left(\left\langle\alpha^{2}\right\rangle\right)$ (see (3.1)) with $\left|T_{1}^{2}\right| \geq n$ and $\left|T_{2}^{2}\right| \geq n$, and it follows by $\mathrm{D}\left(\left\langle\alpha^{2}\right\rangle\right)=n$ that there exist $W_{1} \mid T_{1}$ and $W_{2} \mid T_{2}$ such that W_{1}^{2} and W_{2}^{2} are product-one sequence over $\left\langle\alpha^{2}\right\rangle$. Since T_{1} and T_{2} are product-one free, we obtain that $\pi^{*}\left(W_{1}\right)=\alpha^{n}=\pi^{*}\left(W_{2}\right)$. Therefore
$W_{1} \cdot W_{2}$ and $S \cdot\left(W_{1} \cdot W_{2}\right)^{[-1]}$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$.

Thus either $\left|T_{1}\right| \leq n-1$ or $\left|T_{2}\right| \leq n-1$, and we may assume that $\left|T_{1}\right|=n-1$ and $\left|T_{2}\right|=2 n-1$. Then Lemma 2.2.1 implies that $T_{2}=\left(\alpha^{j}\right)^{[2 n-1]}$ for some odd $j \in[1,2 n-1]$. Then we may assume by changing generating set if necessary that $j=1$ so that $S=T_{3} \cdot \tau \cdot \alpha^{[2 n-1]} \cdot\left(\alpha^{y} \tau\right)$, where $y \in[0,2 n-1]$ and $T_{3} \in \mathcal{F}(\langle\alpha\rangle)$. Since $T_{3} \cdot \alpha \cdot \tau \cdot\left(\alpha^{y} \tau\right)$ is a product-one sequence, we have that

$$
T_{3} \cdot \alpha^{[n]} \cdot \tau \cdot \alpha^{[n-1]} \cdot\left(\alpha^{y} \tau\right) \in \mathcal{B}(G)
$$

It follows that $T_{3} \cdot \alpha^{[n]}$ is a product-one free sequence of length $2 n-1$, and again by Lemma 2.2 .1 that $T_{3}=\alpha^{[n-1]}$. Since $(n-1) \equiv(2 n-1)+y+n$ $(\bmod 2 n)$, we infer that $y=0$, and the assertion follows.

CASE 2. $\left|S_{G_{0}}\right| \in[4,2 n+2]$.
SUBCASE 2.1. $n=2$.
Then $G=Q_{8}$ is the quaternion group. If $\left|S_{G_{0}}\right|=6$, then by Proposition 3.3, we have that

$$
S=\left(\alpha^{x} \tau\right)^{[4]} \cdot\left(\alpha^{y} \tau\right)^{[2]}
$$

where $x, y \in[0,3]$ such that $2 x \not \equiv 2 y(\bmod 4)$ and $2 y+x \equiv 3(x+2)(\bmod 4)$. Since $2 y \equiv 2 x+2(\bmod 4)$, it follows by letting $\alpha_{1}=\alpha^{x} \tau$ and $\tau_{1}=\alpha^{y} \tau$ that $S=\alpha_{1}^{[4]} \cdot \tau_{1}^{[2]}$, where $G=\left\langle\alpha_{1}, \tau_{1}\right| \alpha_{1}^{4}=1_{G}, \tau_{1}^{2}=\alpha_{1}^{2}, \quad$ and $\left.\quad \tau_{1} \alpha_{1}=\alpha_{1}^{-1} \tau_{1}\right\rangle$, whence the assertion follows.

Suppose that $\left|S_{G_{0}}\right|=4$, and we may assume by changing generating set if necessary that $S=\alpha^{r_{1}} \cdot \alpha^{r_{2}} \cdot \tau \cdot \alpha^{x} \tau \cdot \alpha^{y} \tau \cdot \alpha^{z} \tau$ for some $r_{1}, r_{2} \in[1,3]$ and $x, y, z \in$ $[0,3]$. If $\alpha^{r_{1}} \alpha^{r_{2}} \tau \alpha^{x} \tau \alpha^{y} \tau \alpha^{z} \tau=1_{G}$, then $S^{\prime}=\alpha^{r_{1}} \cdot \alpha^{r_{2}} \cdot \alpha^{-x+2} \cdot \alpha^{y-z+2} \in \mathcal{A}(\langle\alpha\rangle)$, and hence it follows by applying Lemma 2.2 .1 that $r_{1} \equiv r_{2} \equiv-x+2 \equiv y-z+$ $2 \equiv j(\bmod 4)$ for some odd $j \in[1,3]$. Thus $S=S_{1} \cdot S_{2}$, where $S_{1}=\alpha^{r_{1}} \cdot \alpha^{x} \tau \cdot \tau$ and $S_{2}=\alpha^{r_{2}} \cdot \alpha^{z} \tau \cdot \alpha^{y} \tau$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Hence we can assume that $\alpha^{r_{1}} \tau \alpha^{r_{2}} \alpha^{x} \tau \alpha^{y} \tau \alpha^{z} \tau=1_{G}$, and we consider

$$
S^{\prime \prime}=\alpha^{r_{1}} \cdot \alpha^{-r_{2}} \cdot \tau \cdot \alpha^{x} \tau \cdot \alpha^{y} \tau \cdot \alpha^{z} \tau \in \mathcal{B}(G)
$$

Then, by the same argument as shown above, we obtain that $S^{\prime \prime} \notin \mathcal{A}(G)$. Let $S^{\prime \prime}=U_{1} \cdot U_{2}$ for some $U_{1}, U_{2} \in \mathcal{B}(G)$. Since S is a minimal product-one sequence, we must have that

$$
U_{1}=\alpha^{r_{1}} \cdot \alpha^{-r_{2}} \quad \text { and } \quad U_{2}=\tau \cdot \alpha^{x} \tau \cdot \alpha^{y} \tau \cdot \alpha^{z} \tau
$$

are both minimal product-one sequences. Then $r_{1}=r_{2}$, and we may assume that $\tau \alpha^{x} \tau \alpha^{y} \tau \alpha^{z} \tau=1_{G}$. Then $U_{2} \in \mathcal{A}(G)$ implies that $\alpha^{-x+2} \cdot \alpha^{y-z+2} \in$ $\mathcal{A}(\langle\alpha\rangle)$, whence $x \equiv y-z(\bmod 4)$. Since $\left(\alpha^{2} \tau \cdot \tau\right) \cdot\left(\alpha^{2} \tau \cdot \tau\right)$ is not a minimal product-one sequence, it follows by case distinction on x, y, z that we have

$$
\begin{aligned}
U_{2} \in\left\{\tau^{[4]},\right. & \tau^{[2]} \cdot(\alpha \tau)^{[2]}, \tau^{[2]} \cdot\left(\alpha^{3} \tau\right)^{[2]}, \tau^{[2]} \cdot \alpha \tau \cdot \alpha^{3} \tau, \\
& \left.\tau \cdot(\alpha \tau)^{[2]} \cdot \alpha^{2} \tau, \tau \cdot \alpha^{2} \tau \cdot\left(\alpha^{3} \tau\right)^{[2]}, \tau \cdot \alpha \tau \cdot \alpha^{2} \tau \cdot \alpha^{3} \tau\right\}
\end{aligned}
$$

Since $S \in \mathcal{A}(G)$, we can assume by changing the generator α for α^{3} if necessary that $r_{1}=r_{2}=1$, and thus we must have $U_{2}=\tau^{[4]}$, for otherwise, S is the product of two product-one sequences, a contradiction. By letting $\alpha_{1}=\tau$ and $\tau_{1}=\alpha^{r_{1}}$, we obtain that $S=\alpha_{1}^{[4]} \cdot \tau_{1}^{[2]}$, where $G=\left\langle\alpha_{1}, \tau_{1}\right| \alpha_{1}^{4}=1_{G}, \tau_{1}^{2}=$ α_{1}^{2}, and $\left.\tau_{1} \alpha_{1}=\alpha_{1}^{-1} \tau_{1}\right\rangle$, whence the assertion follows.
SUBCASE 2.2. $n \geq 3$.
Then we may assume by changing generating set if necessary that $S=$ $T_{1} \cdot \tau \cdot T_{2} \cdot T_{3} \cdot \alpha^{x} \tau$, where $x \in[0,2 n-1], T_{1}, T_{2} \in \mathcal{F}(\langle\alpha\rangle)$ with $\left|T_{2}\right| \geq$ $\left|T_{1}\right| \geq 0$, and $T_{3} \in \mathcal{F}\left(G_{0}\right)$ with $\left|T_{3}\right|=\left|S_{G_{0}}\right|-2$. Moreover, we suppose that $\pi^{*}\left(T_{1}\right)(\tau) \pi^{*}\left(T_{2} \cdot T_{3}^{\prime}\right)\left(\alpha^{x} \tau\right)=1_{G}$, where $T_{3}=\prod_{i \in\left[1,\left|T_{3}\right|\right]}^{\bullet} g_{i}$ is an ordered sequence and $T_{3}^{\prime}=\prod_{i \in\left[1,\left|T_{3}\right| / 2\right]}^{\bullet}\left(g_{2 i-1} g_{2 i}\right) \in \mathcal{F}(\langle\alpha\rangle)$. Then T_{1} and $T_{2} \cdot T_{3}^{\prime}$ are both product-one free sequences and

$$
\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right|=\left(3 n-\left|S_{G_{0}}\right|\right)+\frac{\left|S_{G_{0}}\right|-2}{2} \geq 2 n-2 .
$$

If $\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right| \geq 2 n$, then we infer that there exists a product-one subsequence Z of S such that $S \cdot Z^{[-1]}$ is again a product-one sequence (this follows by the same line of the proof as used in SUBCASE 2.2 of Theorem 4.2), contradicting that $S \in \mathcal{A}(G)$.

Suppose that $\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right|=2 n-1$. Then $\left|T_{3}^{\prime}\right|=n-1$ and $\left|T_{2}\right| \geq \frac{n}{2}$. Since $T_{2} \cdot T_{3}^{\prime}$ is a product-one free sequence with $\left|T_{2} \cdot T_{3}^{\prime}\right| \geq \frac{3 n}{2}-1 \geq \frac{2 n+1}{2}$, it follows by Lemma 2.2 that $T_{2} \cdot T_{3}^{\prime}$ is g-smooth for some $g \in\langle\alpha\rangle$ with ord $(g)=2 n$, and for every $z \in \Pi\left(T_{2} \cdot T_{3}^{\prime}\right)$, there exists a subsequence $W \mid T_{2} \cdot T_{3}^{\prime}$ with $g \mid W$ such that $\pi^{*}(W)=z$. Since $\left|T_{3}^{\prime}\right|=n-1$, Lemma 2.2.3 implies that $g \mid T_{3}^{\prime}$.

If $\Pi\left(T_{1}\right) \cap \Pi\left(T_{2} \cdot T_{3}^{\prime}\right) \neq \emptyset$, then there exist subsequences $W_{1}\left|T_{1}, W_{2}\right| T_{2}$, and $W_{3}^{\prime} \mid T_{3}^{\prime}$ such that W_{3}^{\prime} is a non-trivial sequence (as argued in similar cases) and $\pi^{*}\left(W_{1}\right)=\pi^{*}\left(W_{2} \cdot W_{3}^{\prime}\right)$. Let W_{3} denote the corresponding subsequence of T_{3} and assume that $W_{3}=\left(\alpha^{y_{1}} \tau\right) \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$. Then $Z=W_{2} \cdot\left(\alpha^{y_{1}} \tau\right) \cdot W_{1} \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$ and $S \cdot Z^{[-1]}$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Hence $\Pi\left(T_{1}\right) \cap \Pi\left(T_{2} \cdot T_{3}^{\prime}\right)=\emptyset$, and it follows that $T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}$ is a product-one free sequence of length $2 n-1$. By Lemma 2.2.1, there exists an odd $j \in[1,2 n-1]$ such that

$$
T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}=\left(\alpha^{j}\right)^{[2 n-1]},
$$

and we may assume by changing generating set if necessary that $j=1$ so that $x \equiv 1+n(\bmod 2 n)$. Note that $2 n-2-2\left|T_{1}\right| \geq 0$ is even. If $\left|T_{1}\right| \geq 1$, then

$$
\left(\alpha \cdot \alpha^{-1}\right)^{\left[\left|T_{1}\right|\right]} \quad \text { and } \quad \alpha^{\left[1+\frac{2 n-2-2\left|T_{1}\right|}{2}\right]} \cdot \tau \cdot \alpha^{\left[\frac{2 n-2-2\left|T_{1}\right|}{2}\right]} \cdot\left(\alpha^{x} \tau\right)
$$

are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Thus $\left|T_{1}\right|=0$, and we obtain that $T_{3}=\left(\alpha^{r+1} \tau \cdot \alpha^{r+n} \tau\right)^{[n-1]}$ for some $r \in[0,2 n-1]$ (as argued in similar cases). Since $x \equiv 1+n(\bmod 2 n)$, we obtain that $S=$ $\left(\alpha \cdot \tau \cdot \alpha^{x} \tau\right) \cdot\left(\alpha \cdot \alpha^{r+n} \tau \cdot \alpha^{r+1} \tau\right)^{[n-1]}$, contradicting that $S \in \mathcal{A}(G)$.

Suppose that $\left|T_{1} \cdot T_{2} \cdot T_{3}^{\prime}\right|=2 n-2$. Then $\left|T_{3}^{\prime}\right|=n$ and $\left|T_{2}\right| \geq \frac{n}{2}-1$. Since $T_{2} \cdot T_{3}^{\prime}$ is a product-one free sequence with $\left|T_{2} \cdot T_{3}^{\prime}\right| \geq \frac{3 n}{2}-1 \geq \frac{2 n+1}{2}$, it follows
by Lemma 2.2 that $T_{2} \cdot T_{3}^{\prime}$ is g-smooth for some $g \in\langle\alpha\rangle$ with $\operatorname{ord}(g)=2 n$, and for every $z \in \Pi\left(T_{2} \cdot T_{3}^{\prime}\right)$, there exists a subsequence $W \mid T_{2} \cdot T_{3}^{\prime}$ with $g \mid W$ such that $\pi^{*}(W)=z$. Since $\left|T_{3}^{\prime}\right| \geq n-1$, Lemma 2.2.3 implies that $g \mid T_{3}^{\prime}$.

If $\Pi\left(T_{1}\right) \cap \Pi\left(T_{2} \cdot T_{3}^{\prime}\right) \neq \emptyset$, then there exist subsequences $W_{1}\left|T_{1}, W_{2}\right| T_{2}$, and $W_{3}^{\prime} \mid T_{3}^{\prime}$ such that W_{3}^{\prime} is a non-trivial sequence (as argued in similar cases) and $\pi^{*}\left(W_{1}\right)=\pi^{*}\left(W_{2} \cdot W_{3}^{\prime}\right)$. Let W_{3} denote the corresponding subsequence of T_{3} and assume that $W_{3}=\left(\alpha^{y_{1}} \tau\right) \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$. Then $Z=W_{2} \cdot\left(\alpha^{y_{1}} \tau\right) \cdot W_{1} \cdot\left(\alpha^{y_{2}} \tau\right) \cdot W_{3}^{\prime \prime}$ and $S \cdot Z^{[-1]}$ are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Hence $\Pi\left(T_{1}\right) \cap \Pi\left(T_{2} \cdot T_{3}^{\prime}\right)=\emptyset$, and it follows that $T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}$ is a product-one free sequence of length $2 n-2$. By Lemma 2.2.2, there exists an odd $j \in[1,2 n-1]$ such that either

$$
T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}=\left(\alpha^{j}\right)^{[2 n-3]} \cdot \alpha^{2 j} \quad \text { or } \quad T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}=\left(\alpha^{j}\right)^{[2 n-2]}
$$

and we may assume by changing generating set if necessary that $j=1$ so that either

$$
T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}=\alpha^{[2 n-3]} \cdot \alpha^{2}, \quad \text { whence } x \equiv 1+n \quad(\bmod 2 n),
$$

or else

$$
T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}=\alpha^{[2 n-2]}, \quad \text { whence } x \equiv 2+n \quad(\bmod 2 n) .
$$

Suppose that $T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}=\alpha^{[2 n-3]} \cdot \alpha^{2}$ and $x \equiv 1+n(\bmod 2 n)$. If $\left|T_{1}\right| \geq 1$ and $\alpha^{-2} \in \operatorname{supp}\left(T_{1}\right)$, then

$$
\left(\alpha^{-2} \cdot \alpha \cdot \alpha\right) \cdot\left(\alpha \cdot \alpha^{-1}\right)^{\left[\left|T_{1}\right|-1\right]} \quad \text { and } \quad \alpha^{\left[1+\frac{2 n-4-2\left|T_{1}\right|}{2}\right]} \cdot \tau \cdot \alpha^{\left[\frac{2 n-4-2\left|T_{1}\right|}{2}\right]} \cdot \alpha^{x} \tau
$$

are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. If $\left|T_{1}\right| \geq 1$ and $\alpha^{-2} \notin \operatorname{supp}\left(T_{1}\right)$, then

$$
\left(\alpha \cdot \alpha^{-1}\right)^{\left[\left|T_{1}\right|\right]} \quad \text { and } \quad \alpha^{2} \cdot \alpha^{\left[\frac{2 n-4-2\left|T_{1}\right|}{2}\right]} \cdot \tau \cdot \alpha^{\left[1+\frac{2 n-4-2\left|T_{1}\right|}{2}\right]} \cdot \alpha^{x} \tau
$$

are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Thus we obtain that $\left|T_{1}\right|=0$.

If $\alpha^{2} \in \operatorname{supp}\left(T_{2}\right)$, then $T_{3}=\left(\alpha^{r+1} \tau \cdot \alpha^{r+n} \tau\right)^{[n]}$ for some $r \in[0,2 n-1]$ (as argued in similar cases). Since $x \equiv 1+n(\bmod 2 n)$, we obtain that
$S_{1}=\alpha^{r+1} \tau \cdot \alpha^{r+n} \tau \cdot \alpha^{x} \tau \cdot \alpha^{2} \cdot \tau, S_{2}=\left(\alpha^{r+1} \tau \cdot \alpha^{r+n} \tau\right)^{[2]}, S_{3}=\alpha^{r+n} \tau \cdot \alpha^{r+1} \tau \cdot \alpha$ are all product-one sequences, whence $S=S_{1} \cdot S_{2} \cdot S_{3}^{[n-3]}$, contradicting that $S \in$ $\mathcal{A}(G)$. If $\alpha^{2} \in \operatorname{supp}\left(T_{3}^{\prime}\right)$, then $T_{3}=\left(\alpha^{r_{1}+1} \tau \cdot \alpha^{r_{1}+n} \tau\right)^{[n-1]} \cdot\left(\alpha^{r_{2}+2} \tau \cdot \alpha^{r_{2}+n} \tau\right)$ for some $r_{1}, r_{2} \in[0,2 n-1]$ (as argued in similar cases). Since $x \equiv 1+n$ $(\bmod 2 n)$, we obtain that
$S_{1}=\alpha^{r_{2}+n} \tau \cdot \alpha^{r_{2}+2} \tau \cdot \alpha^{r_{1}+1} \tau \cdot \alpha^{r_{1}+n} \tau \cdot \alpha^{x} \tau \cdot \tau \quad$ and $\quad S_{2}=\alpha^{r_{1}+n} \tau \cdot \alpha^{r_{1}+1} \tau \cdot \alpha$ are both product-one sequences, whence $S=S_{1} \cdot S_{2}^{[n-2]}$, contradicting that $S \in \mathcal{A}(G)$.

Suppose that $T_{1}^{-1} \cdot T_{2} \cdot T_{3}^{\prime}=\alpha^{[2 n-2]}$ and $x \equiv 2+n(\bmod 2 n)$. If $\left|T_{1}\right| \geq 1$, then

$$
\left(\alpha \cdot \alpha^{-1}\right)^{\left[\left|T_{1}\right|\right]} \quad \text { and } \quad \alpha^{\left[2+\frac{2 n-4-2\left|T_{1}\right|}{2}\right]} \cdot \tau \cdot \alpha^{\left[\frac{2 n-4-2\left|T_{1}\right|}{2}\right]} \cdot \alpha^{x} \tau
$$

are both product-one sequences, contradicting that $S \in \mathcal{A}(G)$. Thus $\left|T_{1}\right|=0$, and we obtain that $T_{3}=\left(\alpha^{r+1} \tau \cdot \alpha^{r+n} \tau\right)^{[n]}$ for some $r \in[0,2 n-1]$ (as argued in similar cases). Since $x \equiv 2+n(\bmod 2 n)$, we obtain that

$$
S_{1}=\tau \cdot \alpha^{x} \tau \cdot\left(\alpha^{r+1} \tau \cdot \alpha^{r+n} \tau\right)^{[2]} \quad \text { and } \quad S_{2}=\alpha^{r+n} \tau \cdot \alpha^{r+1} \tau \cdot \alpha
$$

are both product-one sequences, whence $S=S_{1} \cdot S_{2}^{[n-2]}$, contradicting that $S \in \mathcal{A}(G)$.

5. Unions of sets of lengths

In this section, we study sets of lengths and their unions in the monoid $\mathcal{B}(G)$ of product-one sequences over dihedral and dicyclic groups. To do so, we briefly gather the required concepts in the setting of atomic monoids.

Let H be an atomic monoid, this means a commutative, cancellative semigroup with unit element such that every non-unit element can be written as a finite product of atoms. If $a=u_{1} \cdot \ldots \cdot u_{k} \in H$, where $k \in \mathbb{N}$ and u_{1}, \ldots, u_{k} are atoms of H, then k is called the length of the factorization and

$$
\mathrm{L}(a)=\{k \in \mathbb{N} \mid a \text { has a factorization of length } k\} \subset \mathbb{N}
$$

is the set of lengths of a. As usual we set $\mathrm{L}(a)=\{0\}$ if a is invertible, and then

$$
\mathcal{L}(H)=\{\mathrm{L}(a) \mid a \in H\}
$$

denotes the system of sets of lengths of H. If $k \in \mathbb{N}$ and H is not a group, then

$$
\mathcal{U}_{k}(H)=\bigcup_{k \in L, L \in \mathcal{L}(H)} L \subset \mathbb{N}
$$

denotes the union of sets of lengths containing k. For every $k \in \mathbb{N}, \rho_{k}(H)=$ $\sup \mathcal{U}_{k}(H)$ is the k th-elasticity of H, and we denote by $\lambda_{k}(H)=\inf \mathcal{U}_{k}(H)$. Moreover,

$$
\rho(H)=\sup \left\{\left.\frac{\rho_{k}(H)}{k} \right\rvert\, k \in \mathbb{N}\right\}=\lim _{k \rightarrow \infty} \frac{\rho_{k}(H)}{k}
$$

is the elasticity of H. Unions of sets of lengths have been studied in settings ranging from power monoids to Mori domains and to local quaternion orders (for a sample of recent results we refer to $[1,11,12,19,32]$).

Let G be a finite group. The monoid $\mathcal{B}(G)$ of product-one sequences over G is a finitely generated reduced monoid, and it is a Krull monoid if and only if G is abelian ([27, Proposition 3.4]). If G is abelian, then most features of the arithmetic of a general Krull monoid having class group G and prime divisors in all classes can be studied in the monoid $\mathcal{B}(G)$. For this reason, $\mathcal{B}(G)$ has received extensive investigations (see [31] for a survey). If G is nonabelian, then $\mathcal{B}(G)$ fails to be Krull but it is still a C-monoid ([8, Theorem
3.2]). Thus it shares all arithmetical finiteness properties valid for abstract C-monoids ($[18,20]$). Investigations aiming at precise results for arithmetical invariants were started in [27,28]. We continue them in this section and obtain explicit upper and lower bounds in the case of dihedral and dicyclic groups. As usual, we set
$\mathcal{L}(G)=\mathcal{L}(\mathcal{B}(G)), \mathcal{U}_{k}(G)=\mathcal{U}_{k}(\mathcal{B}(G)), \rho_{k}(G)=\rho_{k}(\mathcal{B}(G)), \rho(G)=\rho(\mathcal{B}(G))$
for every $k \in N$. It is well-known that $\mathcal{U}_{k}(G)=\{k\}$ for all $k \in \mathbb{N}$ if and only if $|G| \leq 2$. Thus, whenever convenient, we will assume that $|G| \geq 3$. It is already known that the sets $\mathcal{U}_{k}(G)$ are intervals ([27, Theorem 5.5.1]). Our study of the minima $\lambda_{k}(G)$ runs along the lines of what was done in the abelian case ($\left[16\right.$, Section 3.1]). The study of the maxima $\rho_{k}(G)$ substantially uses the results of Section 4.

Lemma 5.1. Let G be a finite group with $|G| \geq 3$ and let $k \in \mathbb{N}$.

1. $\rho_{k}(G) \leq \frac{k \mathrm{D}(G)}{2}$ and $\rho_{2 k}(G)=k \mathrm{D}(G)$. In particular, $\rho(G)=\frac{\mathrm{D}(G)}{2}$.
2. If $j, l \in \mathbb{N}_{0}$ such that $l \mathrm{D}(G)+j \geq 1$, then

$$
\begin{aligned}
& 2 l+\frac{2 j}{\mathrm{D}(G)} \leq \lambda_{l \mathrm{D}(G)+j}(G) \leq 2 l+j . \\
& \text { In particular, } \lambda_{l \mathrm{D}(G)}(G)=2 l \text { for every } l \in \mathbb{N} \text {. }
\end{aligned}
$$

Proof. 1. [27, Proposition 5.6].
2. Let $j, l \in \mathbb{N}_{0}$ such that $l \mathrm{D}(G)+j \geq 1$. Note that there is some $L \in \mathcal{L}(G)$ with $k, \lambda_{k}(G) \in L$, and it follows that

$$
k \leq \max L \leq \rho(G) \min L=\rho(G) \lambda_{k}(G)
$$

Hence we obtain that

$$
2 l+\frac{2 j}{\mathrm{D}(G)}=\rho(G)^{-1}(l \mathrm{D}(G)+j) \leq \lambda_{l \mathrm{D}(G)+j}
$$

Since $2 \leq \mathrm{D}(G)$, it follows by 1 . that

$$
\lambda_{2 l+j}(G) \leq 2 l+j \leq l \mathrm{D}(G)+j \leq \rho_{2 l}(G)+\rho_{j}(G) \leq \rho_{2 l+j}(G)
$$

whence $l \mathrm{D}(G)+j \in \mathcal{U}_{2 l+j}(G)$ (by [27, Theorem 5.5.1]), equivalently $2 l+j \in$ $\mathcal{U}_{l \mathrm{D}(G)+j}(G)$. Therefore

$$
2 l+\frac{2 j}{\mathrm{D}(G)} \leq \lambda_{l \mathrm{D}(G)+j} \leq 2 l+j
$$

If $j=0$, then $\lambda_{l \mathrm{D}(G)}(G)=2 l$.
Lemma 5.2. Let G be a finite group with $|G| \geq 3$. For every $j \in \mathbb{N}_{\geq 2}$, the following statements are equivalent:
(a) There exists some $L \in \mathcal{L}(G)$ with $\{2, j\} \subset L$.
(b) $j \leq \mathrm{D}(G)$.

Proof. (a) \Rightarrow (b) If $L \in \mathcal{L}(G)$ with $\{2, j\} \subset L$, then Lemma 5.1.1 implies that $j \leq \sup L \leq \rho_{2}(G)=\mathrm{D}(G)$.
(b) \Rightarrow (a) If $j \leq \mathrm{D}(G)$, then there exists some $U \in \mathcal{A}(G)$ with $|U|=\ell \geq j$, say $U=g_{1} \cdot \ldots \cdot g_{\ell}$ with $g_{1} g_{2} \cdots g_{\ell}=1_{G}$. Then $V=g_{1} \cdot \ldots \cdot g_{j-1} \cdot\left(g_{j} \cdots g_{\ell}\right) \in$ $\mathcal{A}(G)$, and $\{2, j\} \subset \mathrm{L}\left(V \cdot V^{-1}\right)$.

Proposition 5.3. Let G be a finite group with $|G| \geq 3$. For every $l \in \mathbb{N}_{0}$, we have

$$
\lambda_{l \mathrm{D}(G)+j}(G)= \begin{cases}2 l & \text { for } j=0, \\ 2 l+1 & \text { for } j \in\left[1, \rho_{2 l+1}(G)-l \mathrm{D}(G)\right], \\ 2 l+2 & \text { for } j \in\left[\rho_{2 l+1}(G)-l \mathrm{D}(G)+1, \mathrm{D}(G)-1\right]\end{cases}
$$

provided that $l \mathrm{D}(G)+j \geq 1$.
Proof. Let $l \in \mathbb{N}_{0}$ and $j \in[0, \mathrm{D}(G)-1]$ such that $l \mathrm{D}(G)+j \geq 1$. For $j=0$, the assertion follows from Lemma 5.1.2. Let $j \in[1, \mathrm{D}(G)-1]$. Then Lemma 5.1.2 implies that

$$
2 l+\frac{2 j}{\mathrm{D}(G)}=\frac{l \mathrm{D}(G)+j}{\rho(G)} \leq \lambda_{l \mathrm{D}(G)+j}(G) \leq 2 l+j
$$

For the $j=1$ case, note that $\rho_{2 \ell+1}(G) \geq \rho_{2 \ell}(G)+1=\ell \mathrm{D}(G)+1$, so $j=1$ forces the second of the three cases to hold, and thus we may assume that $j \geq 2$. Then Lemma 5.2 implies that $\{2, j\} \subset \mathrm{L}(U)$ for some $U \in \mathcal{B}(G)$, whence $\lambda_{j}(G)=2$. Thus we have

$$
\lambda_{l \mathrm{D}(G)+j}(G) \leq \lambda_{l \mathrm{D}(G)}(G)+\lambda_{j}(G)=2 l+2
$$

and hence $\lambda_{l \mathrm{D}(G)+j}(G) \in[2 l+1,2 l+2]$.
If $j \in\left[2, \rho_{2 l+1}(G)-l \mathrm{D}(G)\right]$, then $l \geq 1$, and by [27, Theorem 5.5.1], we obtain that $l \mathrm{D}(G)+j \in \mathcal{U}_{2 l+1}(G)$, equivalently $2 l+1 \in \mathcal{U}_{l \mathrm{D}(G)+j}(G)$. Therefore $\lambda_{l \mathrm{D}(G)+j}(G) \leq 2 l+1$ and thus $\lambda_{l \mathrm{D}(G)+j}=2 l+1$.

If $j>\rho_{2 l+1}(G)-l \mathrm{D}(G)$, then $l \mathrm{D}(G)+j>\rho_{2 l+1}(G)$, and by [27, Theorem 5.5.1], we obtain that $l \mathrm{D}(G)+j \notin \mathcal{U}_{2 l+1}(G)$, and that $\lambda_{l \mathrm{D}(G)+j}(G)>2 l+1$. Therefore $\lambda_{l \mathrm{D}(G)+j}(G)=2 l+2$.

Theorem 5.4. Let G be a dihedral group of order $2 n$, where $n \in \mathbb{N}_{\geq 3}$ is odd. Then, for every $k \in \mathbb{N}_{\geq 2}$ and every $l \in \mathbb{N}_{0}$, we have $\mathcal{U}_{k}(G)=\left[\lambda_{k}(G), \rho_{k}(G)\right]$,
$\rho_{k}(G)=k n, \quad$ and $\quad \lambda_{2 l n+j}(G)= \begin{cases}2 l+j & \text { for } j \in[0,1], \\ 2 l+2 & \text { for } j \geq 2 \text { and } l=0, \\ 2 l+1 & \text { for } j \in[2, n] \text { and } l \geq 1, \\ 2 l+2 & \text { for } j \in[n+1,2 n-1] \text { and } l \geq 1,\end{cases}$
provided that $2 l n+j \geq 1$.
Proof. We obtain that $\mathcal{U}_{k}(G)=\left[\lambda_{k}(G), \rho_{k}(G)\right]$ by [27, Theorem 5.5.1]. We prove the assertion on $\rho_{k}(G)$, and then the assertion on $\lambda_{2 l n+j}(G)$ follows from Proposition 5.3.

Let $k \in \mathbb{N}$. If k is even, the assertion follows from Lemma 5.1.1. For odd k, it is sufficient to show that $\rho_{3}(G) \geq 3 n$. Indeed Lemma 5.1.1 implies that

$$
3 n+2 k n \leq \rho_{3}(G)+\rho_{2 k}(G) \leq \rho_{2 k+3}(G) \leq \frac{(2 k+3) 2 n}{2}=3 n+2 k n
$$

and hence the assertion follows.
Since $n \in \mathbb{N}_{\geq 3}$ is odd, it follows by letting $G=\langle\alpha, \tau\rangle$ that

$$
U=(\alpha \tau)^{[n]} \cdot \tau^{[n]}, \quad V=\left(\alpha^{2} \tau\right)^{[n]} \cdot(\alpha \tau)^{[n]}, \quad \text { and } W=\left(\alpha^{2} \tau\right)^{[n]} \cdot \tau^{[n]}
$$

are the minimal product-one sequences of length $\mathrm{D}(G)$ (Theorem 4.1). Thus we obtain that $\{3,3 n\} \subset \mathrm{L}(U \cdot V \cdot W)$, whence $\rho_{3}(G) \geq 3 n$.

Theorem 5.5. Let G be either a dihedral group $D_{2 n}$ of order $2 n$ or a dicyclic group $Q_{4 m}$ of order $4 m$, where $n \in \mathbb{N}_{\geq 4}$ is even and $m \in \mathbb{N}_{\geq 2}$. Then, for every $k \in \mathbb{N}$, we have

$$
k \mathrm{D}(G)+2 \stackrel{(a)}{\leq} \rho_{2 k+1}(G) \stackrel{(b)}{\leq} k \mathrm{D}(G)+\frac{\mathrm{D}(G)}{2}-1
$$

In particular, if G is isomorphic to D_{8} or to Q_{8}, then $\rho_{2 k+1}(G)=k \mathrm{D}(G)+2$ for every $k \in \mathbb{N}$.
Proof. 1. Let $n \in \mathbb{N}_{\geq 4}$ be even, and $G=\langle\alpha, \tau| \alpha^{n}=\tau^{2}=1_{G}$ and $\tau \alpha=$ $\left.\alpha^{-1} \tau\right\rangle$. To show the inequality (a), we take three minimal product-one sequences
$U=\alpha^{\left[n+\frac{n}{2}-2\right]} \cdot \tau \cdot \alpha^{\frac{n}{2}} \tau, V=\left(\alpha^{-1}\right)^{\left[n+\frac{n}{2}-2\right]} \cdot \alpha \tau \cdot \alpha^{\frac{n}{2}+1} \tau, W=\tau \cdot \alpha^{\frac{n}{2}} \tau \cdot \alpha \tau \cdot \alpha^{\frac{n}{2}+1} \tau$ of length $|U|=|V|=\mathrm{D}(G)$ (Theorem 4.2) and $|W|=4$. Then it follows by $\{3, \mathrm{D}(G)+2\} \subset \mathrm{L}(U \cdot V \cdot W)$ that $\mathrm{D}(G)+2 \leq \rho_{3}(G)$, whence we obtain that, for every $k \geq 2$,

$$
k \mathrm{D}(G)+2=(k-1) \mathrm{D}(G)+(\mathrm{D}(G)+2) \leq \rho_{2 k-2}(G)+\rho_{3}(G) \leq \rho_{2 k+1}(G)
$$

To show the inequality (b), we assume to the contrary that $\rho_{2 k+1}(G)=$ $\left\lfloor\frac{(2 k+1) \mathrm{D}(G)}{2}\right\rfloor$. Then there exist $U_{1}, \ldots, U_{2 k+1} \in \mathcal{A}(G)$ with $\left|U_{1}\right| \geq \cdots \geq\left|U_{2 k+1}\right|$ such that $\rho=\rho_{2 k+1}(G) \in \mathrm{L}\left(U_{1} \cdot \ldots \cdot U_{2 k+1}\right)$. Hence we have that

$$
U_{1} \cdot \ldots \cdot U_{2 k+1}=W_{1} \cdot \ldots \cdot W_{\rho}
$$

where $W_{1}, \ldots, W_{\rho} \in \mathcal{A}(G)$ with $\left|W_{1}\right| \leq \cdots \leq\left|W_{\rho}\right|$. Let $H_{0}=\langle\alpha\rangle \backslash\left\{1_{G}, \alpha^{\frac{n}{2}}\right\}$. For every $g \in H_{0}$ and every sequence $S \in \mathcal{F}(G)$, we define

$$
\psi_{g}(S)=\mathrm{v}_{g}(S)-\mathrm{v}_{g^{-1}}(S)
$$

Then, for every $g \in H_{0}$, we have $\left|\psi_{g}(T)\right| \leq|T|$ and $\left|\psi_{g}(W)\right|=0$ for sequences $T \in \mathcal{F}(G)$ and $W \in \mathcal{A}(G)$ with $|W|=2$.
CASE 1. $\left|U_{1}\right|=\cdots=\left|U_{2 k+1}\right|=\mathrm{D}(G)$.
Then we obtain that either $\left|W_{1}\right|=\cdots=\left|W_{\rho}\right|=2$, or else $\left|W_{1}\right|=\cdots=$ $\left|W_{\rho-1}\right|=2$ and $\left|W_{\rho}\right|=3$. Since $2 k+1$ is odd, it follows by Theorem 4.2 that there exists $g_{0} \in H_{0}$ with $\operatorname{ord}\left(g_{0}\right)=n$ such that the absolute value $\mid \psi_{g_{0}}\left(U_{1}\right.$.
$\left.\ldots \cdot U_{2 k+1}\right) \mid$ is $t\left(\frac{3 n}{2}-2\right)$ for some $t \in \mathbb{N}$. Since $\psi_{g_{0}}\left(W_{i}\right)=0$ for all $i \in[1, \rho-1]$, we obtain that

$$
\begin{aligned}
4 \leq\left(\frac{3 n}{2}-2\right) & \leq\left|\psi_{g_{0}}\left(U_{1} \cdot \ldots \cdot U_{2 k+1}\right)\right| \\
& =\left|\psi_{g_{0}}\left(W_{1} \cdot \ldots \cdot W_{\rho}\right)\right| \\
& \leq\left|\psi_{g_{0}}\left(W_{1} \cdot \ldots \cdot W_{\rho-1}\right)\right|+\left|\psi_{g_{0}}\left(W_{\rho}\right)\right| \leq 3
\end{aligned}
$$

a contradiction.
CASE 2. $\left|U_{1}\right|=\cdots=\left|U_{2 k}\right|=\mathrm{D}(G)$ and $\left|U_{2 k+1}\right|=\mathrm{D}(G)-1$.
Then we obtain that $\left|W_{1}\right|=\cdots=\left|W_{\rho}\right|=2$ and hence

$$
\psi_{g}\left(U_{1} \cdot \ldots \cdot U_{2 k}\right)+\psi_{g}\left(U_{2 k+1}\right)=\psi_{g}\left(U_{1} \cdot \ldots \cdot U_{2 k+1}\right)=\psi_{g}\left(W_{1} \cdot \ldots \cdot W_{\rho}\right)=0
$$

for every $g \in H_{0}$. Let $U_{2 k+1}=T_{1} \cdot T_{2}$, where $T_{1} \in \mathcal{F}(\langle\alpha\rangle)$ and $T_{2} \in \mathcal{F}(G \backslash\langle\alpha\rangle)$. If $\left|T_{1}\right|=0$, then it follows by Proposition 3.2 that $\frac{3 n}{2}-1=\left|U_{2 k+1}\right|=\left|T_{2}\right| \leq n$, contradicting that $n \geq 4$. If $\left|T_{2}\right|=0$, then $\mathrm{D}(\langle\alpha\rangle)=n$ ensures that $\frac{3 n}{2}-1=$ $\left|U_{2 k+1}\right|=\left|T_{1}\right| \leq n$, again a contradiction. Thus T_{1} and T_{2} are both nontrivial sequences, and we show that they are product-one sequences to get a contradiction.

First, we prove that T_{1} is a product-one sequence. Note that $\psi_{g}\left(U_{2 k+1}\right)=$ $\psi_{g}\left(T_{1}\right)$ for all $g \in H_{0}$. If there exists $g_{0} \in H_{0}$ such that $\psi_{g_{0}}\left(T_{1}\right) \neq 0$, then $\left|\psi_{g_{0}}\left(U_{1} \cdot \ldots \cdot U_{2 k}\right)\right|=\left|\psi_{g_{0}}\left(T_{1}\right)\right| \geq 1$. Thus Theorem 4.2 ensures that $\mid \psi_{g_{0}}\left(U_{1}\right.$. $\left.\ldots \cdot U_{2 k}\right) \left\lvert\,=t\left(\frac{3 n}{2}-2\right)\right.$ for some $t \in \mathbb{N}$. Since $\left|T_{2}\right| \geq 2$, it follows that

$$
\frac{3 n}{2}-1=\left|U_{2 k+1}\right|=\left|T_{2}\right|+\left|T_{1}\right| \geq 2+\left|\psi_{g_{0}}\left(T_{1}\right)\right|=2+t\left(\frac{3 n}{2}-2\right) \geq \frac{3 n}{2}
$$

a contradiction. Thus $\psi_{g}\left(U_{2 k+1}\right)=\psi_{g}\left(T_{1}\right)=0$ for all $g \in H_{0}$. Since $\alpha^{\frac{n}{2}} \in$ $\mathrm{Z}(G)$, we have $\mathrm{v}_{\alpha^{\frac{n}{2}}}(U) \leq 1$ for any $U \in \mathcal{A}(G)$ with $|U| \geq 3$. Hence Theorem 4.2 ensures that $\alpha^{\frac{n}{2}} \notin \operatorname{supp}\left(U_{i}\right)$ for all $i \in[1,2 k]$, and hence $\mathrm{v}_{\alpha^{\frac{n}{2}}}\left(U_{1} \cdot \ldots\right.$. $\left.U_{2 k+1}\right)=\mathrm{v}_{\alpha^{\frac{n}{2}}}\left(U_{2 k+1}\right) \leq 1$. Since $\mathrm{v}_{\alpha^{\frac{n}{2}}}\left(W_{1} \cdot \ldots \cdot W_{\rho}\right)$ must be even, we obtain $\mathrm{v}_{\alpha^{\frac{n}{2}}}\left(U_{2 k+1}\right)=0$, and therefore $T_{1}=\prod_{i \in\left[1,\left|T_{1}\right| / 2\right]}^{\bullet}\left(g_{i} \cdot g_{i}^{-1}\right) \in \mathcal{B}\left(H_{0}\right)$.

Next, we show that T_{2} is a product-one sequence. Let $U_{1} \cdot \ldots \cdot U_{2 k}=Z_{1} \cdot Z_{2}$, where $Z_{1} \in \mathcal{F}(\langle\alpha\rangle)$ and $Z_{2} \in \mathcal{F}(G \backslash\langle\alpha\rangle)$. Then Theorem 4.2 implies that

$$
Z_{2}=V_{1} \cdot \ldots \cdot V_{2 k}
$$

where for each $i \in[1,2 k], V_{i}=\alpha^{r_{i}} \tau \cdot \alpha^{\frac{n}{2}+r_{i}} \tau$ for some $r_{i} \in[0, n-1]$. Choose $I \subset[1,2 k]$ to be maximal such that $\prod_{i \in I}^{\bullet} V_{i}$ is a product of minimal productone sequences of length 2. Then both $|I|$ and $|[1,2 k] \backslash I|$ are even, and thus $Z_{2}^{\prime}=\prod_{j \in[1,2 k] \backslash I}^{\bullet} V_{j}$ is a product-one sequence.

Since $T_{1} \cdot Z_{1}$ is a product of minimal product-one sequences of length 2 , it follows that $T_{2} \cdot Z_{2}$ is also a product of minimal product-one sequences of length 2. Let T_{2}^{\prime} be a subsequence of T_{2} obtained by deleting all minimal product-one subsequences of length 2 . Then $T_{2}^{\prime} \cdot Z_{2}^{\prime}$ is again a product of
minimal product-one sequences of length 2 . Since T_{2}^{\prime} and Z_{2}^{\prime} are both squarefree sequences, we obtain that $T_{2}^{\prime}=Z_{2}^{\prime}$ is a product-one sequence, whence $T_{2}=\left(T_{2} \cdot\left(T_{2}^{\prime}\right)^{[-1]}\right) \cdot T_{2}^{\prime} \in \mathcal{B}(G)$.
2. Let $m \geq 2$, and $G=\langle\alpha, \tau| \alpha^{2 m}=1_{G}, \tau^{2}=\alpha^{m}$, and $\left.\tau \alpha=\alpha^{-1} \tau\right\rangle$. To show the inequality (a), we take three minimal product-one sequences

$$
U=\alpha^{[3 m-2]} \cdot \tau^{[2]}, \quad V=\left(\alpha^{-1}\right)^{[3 m-2]} \cdot(\alpha \tau)^{[2]}, \quad W=\left(\alpha^{m} \tau \cdot \alpha^{m+1} \tau\right)^{[2]}
$$

of length $|U|=|V|=\mathrm{D}(G)$ (Theorem 4.3) and $|W|=4$. Then it follows by $\{3, \mathrm{D}(G)+2\} \subset \mathrm{L}(U \cdot V \cdot W)$ that $\mathrm{D}(G)+2 \leq \rho_{3}(G)$, whence we obtain that, for every $k \geq 2$,

$$
k \mathrm{D}(G)+2=(k-1) \mathrm{D}(G)+(\mathrm{D}(G)+2) \leq \rho_{2 k-2}(G)+\rho_{3}(G) \leq \rho_{2 k+1}(G)
$$

To show the inequality (b), we assume to the contrary that $\rho_{2 k+1}(G)=$ $\left\lfloor\frac{(2 k+1) \mathrm{D}(G)}{2}\right\rfloor$. Then there exist $U_{1}, \ldots, U_{2 k+1} \in \mathcal{A}(G)$ with $\left|U_{1}\right| \geq \cdots \geq\left|U_{2 k+1}\right|$ such that $\rho=\rho_{2 k+1}(G) \in \mathrm{L}\left(U_{1} \cdot \ldots \cdot U_{2 k+1}\right)$. Hence we have that

$$
U_{1} \cdot \ldots \cdot U_{2 k+1}=W_{1} \cdot \ldots \cdot W_{\rho}
$$

where $W_{1}, \ldots, W_{\rho} \in \mathcal{A}(G)$ with $\left|W_{1}\right| \leq \cdots \leq\left|W_{\rho}\right|$. Let $H_{0}=\langle\alpha\rangle \backslash\left\{1_{G}, \alpha^{m}\right\}$. For every $g \in H_{0}$ and every sequence $S \in \mathcal{F}(G)$, we define

$$
\psi_{g}(S)=\mathrm{v}_{g}(S)-\mathrm{v}_{g^{-1}}(S)
$$

Then, for every $g \in H_{0}$, we have $\left|\psi_{g}(T)\right| \leq|T|$ and $\left|\psi_{g}(W)\right|=0$ for sequences $T \in \mathcal{F}(G)$ and $W \in \mathcal{A}(G)$ with $|W|=2$.

CASE 1. $\left|U_{1}\right|=\cdots=\left|U_{2 k+1}\right|=\mathrm{D}(G)$.
Then we obtain that either $\left|W_{1}\right|=\cdots=\left|W_{\rho}\right|=2$, or else $\left|W_{1}\right|=\cdots=$ $\left|W_{\rho-1}\right|=2$ and $\left|W_{\rho}\right|=3$. Since $2 k+1$ is odd, it follows by Theorem 4.3 that there exists $g_{0} \in H_{0}$ with $\operatorname{ord}\left(g_{0}\right)=2 m$ such that the absolute value $\left|\psi_{g_{0}}\left(U_{1} \cdot \ldots \cdot U_{2 k+1}\right)\right|$ is $t(3 m-2)$ for some $t \in \mathbb{N}$. Since $\psi_{g_{0}}\left(W_{i}\right)=0$ for all $i \in[1, \rho-1]$, we obtain that

$$
\begin{aligned}
4 \leq 3 m-2 & \leq\left|\psi_{g_{0}}\left(U_{1} \cdot \ldots \cdot U_{2 k+1}\right)\right| \\
& =\left|\psi_{g_{0}}\left(W_{1} \cdot \ldots \cdot W_{\rho}\right)\right| \\
& \leq\left|\psi_{g_{0}}\left(W_{1} \cdot \ldots \cdot W_{\rho-1}\right)\right|+\left|\psi_{g_{0}}\left(W_{\rho}\right)\right| \leq 3,
\end{aligned}
$$

a contradiction.
CASE 2. $\left|U_{1}\right|=\cdots=\left|U_{2 k}\right|=\mathrm{D}(G)$ and $\left|U_{2 k+1}\right|=\mathrm{D}(G)-1$.
Then we obtain that $\left|W_{1}\right|=\cdots=\left|W_{\rho}\right|=2$, and hence
$\psi_{g}\left(U_{1} \cdot \ldots \cdot U_{2 k}\right)+\psi_{g}\left(U_{2 k+1}\right)=\psi_{g}\left(U_{1} \cdot \ldots \cdot U_{2 k+1}\right)=\psi_{g}\left(W_{1} \cdot \ldots \cdot W_{\rho}\right)=0$
for every $g \in H_{0}$. Let $U_{2 k+1}=T_{1} \cdot T_{2}$, where $T_{1} \in \mathcal{F}(\langle\alpha\rangle)$ and $T_{2} \in \mathcal{F}(G \backslash\langle\alpha\rangle)$. If $\left|T_{2}\right|=0$, then $\mathrm{D}(\langle\alpha\rangle)=2 m$ ensures that $3 m-1=\left|U_{2 k+1}\right|=\left|T_{1}\right| \leq 2 m$, a contradiction to $m \geq 2$. Thus T_{2} is a non-trivial sequence. We show that T_{1} and T_{2} are both product-one sequences, and it will be shown that $T_{2} \notin \mathcal{A}(G)$ when $\left|T_{1}\right|=0$.

First, we prove that T_{1} is a product-one sequence. Note that $\psi_{g}\left(U_{2 k+1}\right)=$ $\psi_{g}\left(T_{1}\right)$ for all $g \in H_{0}$. If there exists $g_{0} \in H_{0}$ such that $\psi_{g_{0}}\left(T_{1}\right) \neq 0$, then $\left|\psi_{g_{0}}\left(U_{1} \cdot \ldots \cdot U_{2 k}\right)\right|=\left|\psi_{g_{0}}\left(T_{1}\right)\right| \geq 1$. Thus Theorem 4.3 ensures that $\mid \psi_{g_{0}}\left(U_{1} \cdot\right.$ $\left.\ldots \cdot U_{2 k}\right) \mid=t(3 m-2)$ for some $t \in \mathbb{N}$. Since $\left|T_{2}\right| \geq 2$, it follows that

$$
3 m-1=\left|U_{2 k+1}\right|=\left|T_{2}\right|+\left|T_{1}\right| \geq 2+\left|\psi_{g_{0}}\left(T_{1}\right)\right|=2+t(3 m-2) \geq 3 m
$$

a contradiction. Thus $\psi_{g}\left(U_{2 k+1}\right)=\psi_{g}\left(T_{1}\right)=0$ for all $g \in H_{0}$. Since $\alpha^{m} \in$ $\mathrm{Z}(G)$, we have $\mathrm{v}_{\alpha^{m}}(U) \leq 1$ for any $U \in \mathcal{A}(G)$ with $|U| \geq 3$. Hence Theorem 4.3 ensures that $\alpha^{m} \notin \operatorname{supp}\left(U_{i}\right)$ for all $i \in[1,2 k]$, and thus $\mathrm{v}_{\alpha^{m}}\left(U_{1} \cdot \ldots \cdot\right.$ $\left.U_{2 k+1}\right)=\mathrm{v}_{\alpha^{m}}\left(U_{2 k+1}\right) \leq 1$. Since $\mathrm{v}_{\alpha^{m}}\left(W_{1} \cdot \ldots \cdot W_{\rho}\right)$ must be even, we obtain $\mathrm{v}_{\alpha^{m}}\left(U_{2 k+1}\right)=0$, and therefore $T_{1}=\prod_{i \in\left[1,\left|T_{1}\right| / 2\right]}^{\bullet}\left(g_{i} \cdot g_{i}^{-1}\right) \in \mathcal{B}\left(H_{0}\right)$.

Next, we show that T_{2} is a product-one sequence, which is not a minimal product-one sequence when $\left|T_{1}\right|=0$. Let $U_{1} \cdot \ldots \cdot U_{2 k}=Z_{1} \cdot Z_{2}$, where $Z_{1} \in \mathcal{F}(\langle\alpha\rangle)$ and $Z_{2} \in \mathcal{F}(G \backslash\langle\alpha\rangle)$. Then Theorem 4.3 implies that

$$
Z_{2}=V_{1} \cdot \ldots \cdot V_{2 k}
$$

where for each $i \in[1,2 k], V_{i}=\left(\alpha^{r_{i}} \tau\right)^{[2]}$ for some $r_{i} \in[0,2 m-1]$. Choose $I \subset[1,2 k]$ to be maximal such that $\prod_{i \in I}^{\bullet} V_{i}$ is a product of minimal productone sequences of length 2 . Then both $|I|$ and $|[1,2 k] \backslash I|$ are even, and thus $Z_{2}^{\prime}=\prod_{j \in[1,2 k] \backslash I}^{\bullet} V_{j}$ is a product-one sequence, which is in fact a product of product-one subsequences of length at most 4.

Since $T_{1} \cdot Z_{1}$ is a product of minimal product-one sequences of length 2 , it follows that $T_{2} \cdot Z_{2}$ is also a product of minimal product-one sequences of length 2. Let T_{2}^{\prime} be a subsequence of T_{2} obtained by deleting all minimal productone subsequences of length 2 . Then $T_{2}^{\prime} \cdot Z_{2}^{\prime}$ is again a product of minimal product-one sequences of length 2 . Since both T_{2}^{\prime} and Z_{2}^{\prime} have no product-one subsequences of length 2 and $\alpha^{m} \in \mathbf{Z}(G)$, it follows that $1_{G} \in \pi\left(Z_{2}^{\prime}\right)=\pi\left(T_{2}^{\prime}\right)$, whence $T_{2}=\left(T_{2} \cdot\left(T_{2}^{\prime}\right)^{[-1]}\right) \cdot T_{2}^{\prime} \in \mathcal{B}(G)$. To conclude the proof, we may assume that $\left|T_{1}\right|=0$. Then $U_{2 k+1}=T_{2}$, and it follows that either that T_{2}^{\prime} is trivial, or that $U_{2 k+1}=T_{2}^{\prime}$. In the former case, $U_{2 k+1}$ is a product of product-one subsequences of length 4 (as this is the case for Z_{2}^{\prime} with the terms of Z_{2}^{\prime} and T_{2}^{\prime} pairing up), so $U_{2 k+1} \in \mathcal{A}(G)$ forces $3 m-1=\left|U_{2 k+1}\right| \leq 4$, contradicting that $m \geq 2$. In the latter case, $U_{2 k+1}$ is a product of product-one sequences of length 2 by definition of T_{2}^{\prime}, whence $U_{2 k+1} \in \mathcal{A}(G)$ forces $3 m-1=\left|U_{2 k+1}\right| \leq 2$, again a contradiction.

Acknowledgments. We thank the referee for very careful reading and for providing valuable suggestions. The referee pointed out some mistakes in a previous manuscript, and hence we realized and corrected them. We thank Alfred Geroldinger and David Grynkiewicz for feedback on a preliminary version.

References

[1] N. R. Baeth and D. Smertnig, Arithmetical invariants of local quaternion orders, Acta Arith. 186 (2018), no. 2, 143-177. https://doi.org/10.4064/aa170601-13-8
[2] F. E. Brochero Martínez and S. Ribas, Extremal product-one free sequences in dihedral and dicyclic groups, Discrete Math. 341 (2018), no. 2, 570-578. https://doi.org/10. 1016/j.disc.2017.09.024
[3] _ The $\{1, s\}$-weighted Davenport constant in \mathbb{Z}_{n} and an application in an inverse problem, submitted; https://arxiv.org/abs/1803.09705.
[4] F. Chen and S. Savchev, Long minimal zero-sum sequences in the groups $C_{2}^{r-1} \oplus C_{2 k}$, Integers 14 (2014), Paper No. A23, 29 pp.
[5] K. Cziszter, The Noether number of p-groups, J. Algebra Appl. 18 (2019), no. 4, 1950066, 14 pp. https://doi.org/10.1142/S021949881950066X
[6] K. Cziszter and M. Domokos, On the generalized Davenport constant and the Noether number, Cent. Eur. J. Math. 11 (2013), no. 9, 1605-1615. https://doi.org/10.2478/ s11533-013-0259-z
[7] _ The Noether number for the groups with a cyclic subgroup of index two, J. Algebra 399 (2014), 546-560. https://doi.org/10.1016/j.jalgebra.2013.09.044
[8] K. Cziszter, M. Domokos, and A. Geroldinger, The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics, in Multiplicative ideal theory and factorization theory, 43-95, Springer Proc. Math. Stat., 170, Springer, 2016. https://doi.org/10.1007/978-3-319-38855-7_3
[9] K. Cziszter, M. Domokos, and I. Szöllősi, The Noether numbers and the Davenport constants of the groups of order less than 32, J. Algebra 510 (2018), 513-541. https: //doi.org/10.1016/j.jalgebra.2018.02.040
[10] Y. Fan, W. Gao, and Q. Zhong, On the Erdős-Ginzburg-Ziv constant of finite abelian groups of high rank, J. Number Theory 131 (2011), no. 10, 1864-1874. https://doi. org/10.1016/j.jnt.2011.02.017
[11] Y. Fan, A. Geroldinger, F. Kainrath, and S. Tringali, Arithmetic of commutative semigroups with a focus on semigroups of ideals and modules, J. Algebra Appl. 16 (2017), no. 12, 1750234, 42 pp. https://doi.org/10.1142/S0219498817502346
[12] Y. Fan and S. Tringali, Power monoids: a bridge between factorization theory and arithmetic combinatorics, J. Algebra 512 (2018), 252-294. https://doi.org/10.1016/j. jalgebra.2018.07.010
[13] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), no. 4, 337-369. https://doi.org/10.1016/j.exmath.2006.07.002
[14] W. Gao, A. Geroldinger, and D. J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith. 141 (2010), no. 2, 103-152. https://doi.org/10.4064/aa141-2-1
[15] W. Gao, A. Geroldinger, and W. A. Schmid, Inverse zero-sum problems, Acta Arith. 128 (2007), no. 3, 245-279. https://doi.org/10.4064/aa128-3-5
[16] A. Geroldinger, Additive group theory and non-unique factorizations, in Combinatorial number theory and additive group theory, 1-86, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009. https://doi.org/10.1007/978-3-7643-8962-8
[17] A. Geroldinger and D. J. Grynkiewicz, The large Davenport constant I: Groups with a cyclic, index 2 subgroup, J. Pure Appl. Algebra 217 (2013), no. 5, 863-885. https: //doi.org/10.1016/j.jpaa.2012.09.004
[18] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Pure and Applied Mathematics (Boca Raton), 278, Chapman \& Hall/CRC, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420003208
[19] A. Geroldinger, F. Kainrath, and A. Reinhart, Arithmetic of seminormal weakly Krull monoids and domains, J. Algebra 444 (2015), 201-245. https://doi.org/10.1016/j. jalgebra.2015.07.026
[20] A. Geroldinger and Q. Zhong, A characterization of seminormal C-monoids, Boll. Unione Mat. Ital., to appear; https://doi.org/10.1007/s40574-019-00194-9
[21] B. Girard, An asymptotically tight bound for the Davenport constant, J. Éc. polytech. Math. 5 (2018), 605-611. https://doi.org/10.5802/jep. 79
[22] B. Girard and W. A. Schmid, Inverse zero-sum problems for certain groups of rank three, submitted; https://arxiv.org/abs/1809.03178.
[23] , Direct zero-sum problems for certain groups of rank three, J. Number Theory 197 (2019), 297-316. https://doi.org/10.1016/j.jnt.2018.08.016
[24] D. J. Grynkiewicz, The large Davenport constant II: general upper bounds, J. Pure Appl. Algebra 217 (2013), no. 12, 2221-2246. https://doi.org/10.1016/j.jpaa.2013.03.002
[25] , Structural Additive Theory, Developments in Mathematics, 30, Springer, Cham, 2013. https://doi.org/10.1007/978-3-319-00416-7
[26] D. Han and H. Zhang, Erdős-Ginzburg-Ziv theorem and Noether number for $C_{m} \ltimes_{\varphi} C_{m n}$, J. Number Theory 198 (2019), 159-175. https://doi.org/10.1016/j.jnt.2018.10.007
[27] J. S. Oh, On the algebraic and arithmetic structure of the monoid of product-one sequences, J. Commut. Algebra, to appear; https://projecteuclid.org/euclid.jca/ 1523433705
[28] \qquad , On the algebraic and arithmetic structure of the monoid of product-one sequences II, Period. Math. Hungar. 78 (2019), 203-230.
[29] W. A. Schmid, Inverse zero-sum problems II, Acta Arith. 143 (2010), no. 4, 333-343. https://doi.org/10.4064/aa143-4-2
[30] \qquad , The inverse problem associated to the Davenport constant for $C_{2} \oplus C_{2} \oplus C_{2 n}$, and applications to the arithmetical characterization of class groups, Electron. J. Combin. 18 (2011), no. 1, Paper 33, 42 pp.
[31] , Some recent results and open problems on sets of lengths of Krull monoids with finite class group, in Multiplicative ideal theory and factorization theory, 323-352, Springer Proc. Math. Stat., 170, Springer, 2016. https://doi.org/10.1007/978-3-319-38855-7_14
[32] S. Tringali, Structural properties of subadditive families with applications to factorization theory, Israel J. Math., to appear; https://arxiv.org/abs/1706.03525.

Jun Seok Oh
Institute for Mathematics and Scientific Computing
University of Graz
NAWI Graz, Heinrichstrasse 36, 8010 Graz, Austria
Email address: junseok.oh@uni-graz.at
Qinghai Zhong
Institute for Mathematics and Scientific Computing
University of Graz
NAWI Graz, Heinrichstrasse 36, 8010 Graz, Austria
Email address: qinghai.zhong@uni-graz.at

[^0]: Received January 13, 2019; Revised April 5, 2019; Accepted May 2, 2019.
 2010 Mathematics Subject Classification. 20D60, 20M13, 11B75, 11P70.
 Key words and phrases. Product-one sequences, Davenport constant, dihedral groups, dicyclic groups, sets of lengths, unions of sets of lengths.

 This work was supported by the Austrian Science Fund FWF, W1230 Doctoral Program Discrete Mathematics and Project No. P28864-N35.

