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ON MINIMAL PRODUCT-ONE SEQUENCES OF MAXIMAL

LENGTH OVER DIHEDRAL AND DICYCLIC GROUPS

Jun Seok Oh and Qinghai Zhong

Abstract. Let G be a finite group. By a sequence over G, we mean a fi-

nite unordered sequence of terms from G, where repetition is allowed, and
we say that it is a product-one sequence if its terms can be ordered such

that their product equals the identity element of G. The large Davenport
constant D(G) is the maximal length of a minimal product-one sequence,

that is, a product-one sequence which cannot be factored into two non-

trivial product-one subsequences. We provide explicit characterizations
of all minimal product-one sequences of length D(G) over dihedral and

dicyclic groups. Based on these characterizations we study the unions of

sets of lengths of the monoid of product-one sequences over these groups.

1. Introduction

Let G be a finite group. A sequence S over G means a finite sequence of
terms from G which is unordered, repetition of terms allowed. We say that
S is a product-one sequence if its terms can be ordered so that their product
equals the identity element of the group. The small Davenport constant d(G)
is the maximal integer ` such that there is a sequence of length ` which has
no non-trivial product-one subsequence. The large Davenport constant D(G)
is the maximal length of a minimal product-one sequence (this is a product-
one sequence which cannot be factored into two non-trivial product-one sub-
sequences). We have 1 + d(G) ≤ D(G) and equality holds if G is abelian. The
study of the Davenport constant of finite abelian groups has been a central
topic in zero-sum theory since the 1960s (see [13] for a survey). Both the direct
problem, asking for the precise value of the Davenport constant in terms of
the group invariants, as well as the associated inverse problem, asking for the
structure of extremal sequences, have received wide attention in the literature.
We refer to [4, 14, 15, 21–23, 29, 30] for progress with respect to the direct and
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to the inverse problem. Much of this research was stimulated by and applied
to factorization theory and we refer to [16, 18] for more information on this
interplay.

Applications to invariant theory (in particular, the relationship of the small
and large Davenport constants with the Noether number, see [5–9,26]) pushed
forward the study of the Davenport constants for finite non-abelian groups.
Geroldinger and Grynkiewicz ([17,24]) studied the small and the large Daven-
port constant of non-abelian groups and derived their precise values for groups
having a cyclic index 2 subgroup. Brochero Mart́ınez and Ribas ([2, 3]) de-
termined, among others, the structure of product-one free sequences of length
d(G) over dihedral and dicyclic groups.

In this paper we establish a characterization of the structure of minimal
product-one sequences of length D(G) over dihedral and dicyclic groups (The-
orems 4.1, 4.2, and 4.3). It turns out that this problem is quite different
from the study of product-one free sequence done by Brochero Mart́ınez and
Ribas. The minimal product-one sequences over G are the atoms (irreducible
elements) of the monoid B(G) of all product-one sequences over G. Algebraic
and arithmetic properties of B(G) were recently studied in [27, 28]. Based on
our characterization results of minimal product-one sequences of length D(G)
we give a description of all unions of sets of lengths of B(G) (Theorems 5.4 and
5.5).

We proceed as follows. In Section 2, we fix our notation and gather the
required tools. In Section 3, we study the structure of minimal product-one se-
quences fulfilling certain requirements on their length and their support (Propo-
sitions 3.2 and 3.3). Based on these preparatory results, we establish an explicit
characterization of all minimal product-one sequences having length D(G) for
dihedral groups (Theorems 4.1 and 4.2) and for dicyclic groups (Theorem 4.3).
Our results on unions of sets of lengths are given in Section 5.

2. Preliminaries

We denote by N the set of positive integers and we set N0 = N ∪ {0}. For
each k ∈ N, we also denote by N≥k the set of positive integers greater than or
equal to k. For integers a, b ∈ Z, [a, b] = {x ∈ Z | a ≤ x ≤ b} is the discrete
interval.

Groups. Let G be a multiplicatively written finite group with identity element
1G. For an element g ∈ G, we denote by ord(g) ∈ N the order of g, and for
subsets A,B ⊂ G, we set

AB = {ab | a ∈ A and b ∈ B} and gA = {ga | a ∈ A} .

If G0 ⊂ G is a non-empty subset, then we denote by 〈G0〉 ⊂ G the subgroup
generated by G0, and by H(G0) = {g ∈ G | gG0 = G0} the left stabilizer of
G0. Then H(G0) ⊂ G is a subgroup, and G0 is a union of right H(G0)-cosets.
Of course, if G is abelian, then we do not need to differentiate between left
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and right stabilizers and simply speak of the stabilizer of G0, and when G is
written additively, we have that H(G0) = {g ∈ G | g+G0 = G0}. Furthermore,
for every n ∈ N and for a subgroup H ⊂ G, we denote by

• [G : H] the index of H in G,
• φH : G→ G/H the canonical epimorphism if H ⊂ G is normal,
• Cn an (additively written) cyclic group of order n,
• D2n a dihedral group of order 2n, and by
• Q4n a dicyclic group of order 4n.

Sequences over groups. Let G be a finite group with identity element 1G
and G0 ⊂ G a subset. The elements of the free abelian monoid F(G0) will
be called sequences over G0. This terminology goes back to Combinatorial
Number Theory. Indeed, a sequence over G0 can be viewed as a finite unordered
sequence of terms from G0, where the repetition of elements is allowed. We
briefly discuss our notation which follows the monograph [25, Chapter 10.1].
In order to avoid confusion between multiplication in G and multiplication in
F(G0), we denote multiplication in F(G0) by the boldsymbol · and we use
brackets for all exponentiation in F(G0). In particular, a sequence S ∈ F(G0)
has the form

(2.1) S = g1 · . . . · g` =
∏•

i∈[1,`]
gi ∈ F(G0),

where g1, . . . , g` ∈ G0 are the terms of S. For g ∈ G0,

• vg(S) = |{i ∈ [1, `] | gi = g}| denotes the multiplicity of g in S,
• supp(S) = {g ∈ G0 | vg(S) > 0} denotes the support of S, and
• h(S) = max{vg(S) | g ∈ G0} denotes the maximal multiplicity of S.

A subsequence T of S is a divisor of S in F(G0) and we write T |S. For a
subset H ⊂ G0, we denote by SH the subsequence of S consisting of all terms
from H. Furthermore, T |S if and only if vg(T ) ≤ vg(S) for all g ∈ G0, and

in such case, S · T [−1] denotes the subsequence of S obtained by removing the
terms of T from S so that vg

(
S ·T [−1]) = vg(S)− vg(T ) for all g ∈ G0. On the

other hand, we set S−1 = g−11 · . . . · g−1` to be the sequence obtained by taking
elementwise inverse from S.

Moreover, if S1, S2 ∈ F(G0) and g1, g2 ∈ G0, then S1 · S2 ∈ F(G0) has
length |S1|+ |S2|, S1 · g1 ∈ F(G0) has length |S1|+ 1, g1g2 ∈ G is an element
of G, but g1 · g2 ∈ F(G0) is a sequence of length 2. If g ∈ G0, T ∈ F(G0), and
k ∈ N0, then

g[k] = g · . . . · g︸ ︷︷ ︸
k

∈ F(G0) and T [k] = T · . . . · T︸ ︷︷ ︸
k

∈ F(G0) .

Let S ∈ F(G0) be a sequence as in (2.1). When G is written multiplicatively,
we denote by

π(S) = {gτ(1) · · · gτ(`) ∈ G | τ a permutation of [1, `]} ⊂ G
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the set of products of S, and it can easily be seen that π(S) is contained in a
G′-coset, where G′ is the commutator subgroup of G. Note that |S| = 0 if and
only if S = 1F(G), and in that case we use the convention that π(S) = {1G}.
When G is written additively with commutative operation, we likewise define

σ(S) = g1 + · · ·+ g` ∈ G

to be the sum of S. More generally, for any n ∈ N0, the n-sums and n-products
of S are respectively denoted by

Σn(S) = {σ(T )
∣∣ T |S and |T | = n} ⊂ G and Πn(S) =

⋃
T |S
|T |=n

π(T ) ⊂ G ,

and the subsequence sums and subsequence products of S are respectively de-
noted by

Σ(S) =
⋃
n≥1

Σn(S) ⊂ G and Π(S) =
⋃
n≥1

Πn(S) ⊂ G .

The sequence S is called

• a product-one sequence if 1G ∈ π(S),
• product-one free if 1G /∈ Π(S),
• square-free if h(S) ≤ 1.

If S = g1 · . . . · g` ∈ B(G) is a product-one sequence with 1G = g1 · · · g`, then
1G = gi · · · g`g1 · · · gi−1 for every i ∈ [1, `]. Every map of groups θ : G → H
extends to a monoid homomorphism θ : F(G) → F(H), where θ(S) = θ(g1) ·
. . . · θ(g`). If θ is a group homomorphism, then θ(S) is a product-one sequence
if and only if π(S) ∩ ker(θ) 6= ∅. We denote by

B(G0) =
{
S ∈ F(G0) | 1G ∈ π(S)

}
the set of all product-one sequences over G0, and clearly B(G0) ⊂ F(G0) is
a submonoid. We denote by A(G0) the set of irreducible elements of B(G0)
which, in other words, is the set of minimal product-one sequences over G0.
Moreover,

D(G0) = sup
{
|S| |S ∈ A(G0)

}
∈ N ∪ {∞}

is the large Davenport constant of G0, and

d(G0) = sup
{
|S| |S ∈ F(G0) is product-one free

}
∈ N0 ∪ {∞}

is the small Davenport constant of G0. It is well known that d(G) + 1 ≤
D(G) ≤ |G|, with equality in the first bound when G is abelian, and equality in
the second bound when G is cyclic ([17, Lemma 2.4]). Moreover, Geroldinger
and Grynkiewicz provide the precise value of the Davenport constants for non-
cyclic groups having a cyclic index 2 subgroups (see [17, 24]), whence we have
that, for every n ∈ N≥2,

D(Q4n) = 3n and D(D2n) =

{
2n if n ≥ 3 is odd,
3n
2 if n ≥ 4 is even.
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Ordered sequences over groups. These are an important tool used to
study (unordered) sequences over non-abelian groups. Indeed, it is quite useful
to have related notation for sequences in which the order of terms matters.
Thus, for a subset G0 ⊂ G, we denote by F∗(G0) =

(
F∗(G0), ·

)
the free

(non-abelian) monoid with basis G0, whose elements will be called the ordered
sequences over G0.

Taking an ordered sequence in F∗(G0) and considering all possible permu-
tations of its terms gives rise to a natural equivalence class in F∗(G0), yielding
a natural map

[·] : F∗(G0) → F(G0)

given by abelianizing the sequence product in F∗(G0). For any sequence S ∈
F(G0), we say that an ordered sequence S∗ ∈ F∗(G0) with [S∗] = S is an
ordering of the sequence S ∈ F(G0).

All notation and conventions for sequences extend naturally to ordered se-
quences. We sometimes associate an (unordered) sequence S with a fixed (or-
dered) sequence having the same terms, also denoted by S. While somewhat
informal, this does not give rise to confusion, and will improve the readability
of some of the arguments.

For an ordered sequence S = g1 ·. . .·g` ∈ F∗(G), we denote by π∗ : F∗(G)→
G the unique homomorphism that maps an ordered sequence onto its product
in G, so

π∗(S) = g1 · · · g` ∈ G .

If G is a multiplicatively written abelian group, then for every sequence S ∈
F(G), we always use π∗(S) ∈ G to be the unique product, and Π(S) =⋃{

π∗(T ) |T divides S and |T | ≥ 1
}
⊂ G.

For the proof of our main results, the structure of product-one free sequences
over cyclic groups plays a crucial role. Thus we gather some necessary lemmas
regarding sequences over cyclic groups. Let G be an additively written finite
cyclic group. A sequence S ∈ F(G) is called smooth (more precisely, g-smooth)
if S = (n1g) · . . . · (n`g), where |S| = ` ∈ N, g ∈ G, 1 = n1 ≤ · · · ≤ n`,
m = n1 + · · ·+ n` < ord(g), and Σ(S) = {g, 2g, . . . ,mg}.

Lemma 2.1 ([16, Lemma 5.1.4]). Let G be an additively written cyclic group
of order |G| = n ≥ 3, g ∈ G, and k, l, n1, . . . , nl ∈ N such that l ≥ k

2 and
m = n1 + · · ·+nl < k ≤ ord(g). If 1 ≤ n1 ≤ · · · ≤ nl and S = (n1g) · . . . · (nlg),
then

∑
(S) =

{
g, 2g, . . . ,mg

}
, and S is g-smooth.

Lemma 2.2. Let G be an additively written cyclic group of order |G| = n ≥ 3
and S ∈ F(G) a product-one free sequence of length |S| ≥ n+1

2 . Then S is
g-smooth for some g ∈ G with ord(g) = n, and for every h ∈

∑
(S), there

exists a subsequence T |S such that σ(T ) = h and g |T . In particular,

1. if |S| = n− 1, then S = g[n−1].
2. if |S| = n− 2, then S = (2g) · g[n−3] or S = g[n−2].
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3. if n ≥ 4, then, for every subsequence W |S with |W | ≥ n
2 − 1, we obtain

that g |W .

Proof. The first statement, that S is g-smooth for some g ∈ G with ord(g) = n,
was found independently by Savchev–Chen and by Yuan, and we cite it in the
formulation of [16, Theorem 5.1.8.1].

Suppose now that S = (n1g) · . . . · (n`g) with 1 = n1 ≤ · · · ≤ n`. Then
n2 + · · ·+ n` < n− 1 and `− 1 ≥ n−1

2 . Applying Lemma 2.1 (with k = n− 1),

we obtain that S · g[−1] is still g-smooth. Let h ∈
∑

(S) =
{
g, 2g, . . . , (n1 +

· · · + n`)g
}

. If h = g, then we take T = g. If h 6= g, then since S · g[−1]
is g-smooth, it follows that h + (−g) ∈

∑(
S · g[−1]

)
, and hence there exists

W |S ·g[−1] such that σ(W ) = h+(−g). Thus W ·g is a subsequence of S with
σ(W · g) = h.

1. and 2. This follows immediately from the main statement.
3. Let n ≥ 4, and W |S be a subsequence with |W | ≥ n

2 − 1. Then there

exists a subset I ⊂ [1, `] with |I| ≥ n
2 − 1 such that W =

∏•
i∈I(nig). Assume

to the contrary that ni ≥ 2 for all i ∈ I. Then

n−1 ≥
∑̀
j=1

nj =
∑
i∈I

ni+
∑

j∈[1,`]\I

nj ≥ 2|W |+
(
|S|−|W |

)
= |S|+|W | ≥ n−1

2
,

a contradiction. �

3. On special sequences

In this section, we study the structure of minimal product-one sequences
under certain additional conditions (Propositions 3.2 and 3.3). These results
will be used substantially in the proofs of our main results in next section. We
need the Theorem of DeVos–Goddyn–Mohar (see Theorem 13.1 of [25] and the
proceeding special cases).

Lemma 3.1. Let G be a finite abelian group, S ∈ F(G) a sequence, n ∈ [1, |S|],
and H = H

(∑
n(S)

)
. Then

|Σn(S)| ≥

 ∑
g∈G/H

min{n, vg
(
φH(S)

)
} − n+ 1

 |H| .
Let G be an additively (resp. multiplicatively) written finite abelian group.

Then 2G = {2g | g ∈ G}
(
resp. G2 = {g2 | g ∈ G}

)
. Likewise, given a sequence

S = g1 · . . . · g` ∈ F(G), we set

(3.1) 2S = 2g1 · . . . · 2g` ∈ F(2G)
(
resp. S2 = g21 · . . . · g2` ∈ F

(
G2
))
.

The Erdős-Ginzburg-Ziv constant s(G) is the smallest integer ` ∈ N such that
every sequence S ∈ F(G) of length |S| ≥ ` has a subsequence T ∈ B(G)
of length |T | = exp(G). If G = Cn1

⊕ Cn2
with 1 ≤ n1 |n2, then s(G) =
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2n1 + 2n2 − 3 ([18, Theorem 5.8.3]). Results on groups of higher rank can be
found in [10].

Proposition 3.2. Let G = 〈α, τ |αn = τ2 = 1G and τα = α−1τ〉 be a
dihedral group, where n ∈ N≥4 is even. Let S ∈ F(G) be a minimal product-
one sequence such that |S| ≥ n and supp(S) ⊂ G \ 〈α〉. Then S is a sequence
of length |S| = n having the following form :

(a) If n = 4, then

S = τ · ατ · α2τ · α3τ or S = (αxτ)[2] · αyτ · αy+2τ ,

where x, y ∈ [0, 3] with x ≡ y + 1 (mod 2).
(b) If n ≥ 6, then

S = (αxτ)[v] · (α
n
2 +xτ)[

n
2−v] · (αyτ)[w] · (α

n
2 +yτ)[

n
2−w] ,

where x, y ∈ [0, n−1] such that 2x 6≡ 2y (mod n) and gcd(x−y, n2 ) = 1,
and v, w ∈ [0, n2 ] such that x− y ≡ v − w (mod 2).

In particular, there are no minimal product-one sequences S over G such that
S = S1 · S2 for some S1 ∈ F

(
〈α〉
)

and S2 ∈ F
(
G \ 〈α〉

)
of length |S2| ≥ n+ 2.

Proof. For every x ∈ Z, we set x = x+ nZ ∈ Z/nZ. Let S =
∏•
i∈[1,|S|] α

xiτ ∈
A(G) be of length |S| ≥ n with αx1τ · · ·αx|S|τ = 1G, where x1, . . . , x|S| ∈
[0, n− 1]. Since S ∈ A(G), it follows that |S| is even, and after renumbering if
necessary, we set

W = x1 · . . . · x|S| = W1 ·W2 ∈ F(Z/nZ) ,

whereW1 =
∏•
i∈[1,|S|/2] x2i−1 andW2 =

∏•
i∈[1,|S|/2] x2i. Thus we have σ(W1) =

σ(W2). If we shift the sequence W by y for some y ∈ Z, then the corresponding
sequence S′ =

∏•
i∈[1,|S|] α

xi+yτ is still a minimal product-one sequence. If S′

has the asserted structure, then the same is true for S whence we may shift the
sequence W whenever this is convenient. For every subsequence U = y1 · . . . ·yv
of W , we denote by ψ(U) = αy1τ · . . . · αyvτ the corresponding subsequence of
S.

A1. Let U = U1 ·U2 be a subsequence of W such that |U1| = |U2| and σ(U1) =
σ(U2). Then ψ(U) is a product-one sequence.

Proof of A1. Suppose that U1 = y1 · . . . · y|U1| and U2 = z1 · . . . · z|U1|. Since
σ(U1) = σ(U2), it follows that

αy1ταz1τ · · ·αy|U1|ταz|U1|τ = α(y1+···+y|U1|)−(z1+···+z|U1|) = 1G ,

whence ψ(U) is a product-one sequence. �

If supp(W1) ∩ supp(W2) 6= ∅, say x1 = x2, then since σ(W1) = σ(W2), it
follows by A1 that ψ(x1 · x2) and ψ

(
W · (x1 · x2)[−1]

)
are both product-one

sequences, a contradiction. Therefore supp(W1) ∩ supp(W2) = ∅.
CASE 1. h(W ) = 1.
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Since |W | ≥ n = |Z/nZ|, it follows that |W | = n, and hence supp(W ) =
Z/nZ. Since σ(W1) = σ(W2), it follows that

2(x1 + x3 + · · ·+ x|S|−1) ≡ n(n− 1)

2
(mod n) , whence 2

∣∣ n
2

(n− 1) .

Since n is even, we have gcd(2, n− 1) = 1, which implies that n
2 is even. Note

that, for any distinct two elements xi1 , xi3 ∈ [1, n2 ] with xi2 = xi1 + n
2 and

xi4 = xi3 + n
2 , the sequence

∏•
k∈[1,4] α

xik τ is a product-one sequence. Since

supp(W ) = Z/nZ, we have that S is a product of n
4 product-one sequences of

length 4. Since S ∈ A(G), we must have that n = 4 and W is a sequence over
Z/4Z with h(W ) = 1, whence ψ(W ) is the desired sequence for (a).

CASE 2. h(W ) ≥ 2.

Then there exists i ∈ [1, |W |], say i = 1, such that vx1(W ) ≥ 2. In view
of supp(W1) ∩ supp(W2) = ∅, we may assume without loss of generality that
x1 = x3. Let

W ′ =
(
W1 · (x1 · x3)[−1]

)
·W2 and ` =

|W ′|
2

=
|W |

2
− 1 .

If
∑
`(2W

′) = 2(Z/nZ), it follows by σ(W ′) = 2σ(W2) − 2x1 ∈ 2(Z/nZ)
that there exists a subsequence T |W ′ of length |T | = ` such that 2σ(T ) =
σ(W ′). Hence we infer that σ(T ) = σ(W ′ · T [−1]) and |T | = |W ′ · T [−1]|.
Thus A1 implies that ψ(x1 · x3) and ψ(W ′) are both product-one sequences, a
contradiction. Therefore

∑
`(2W

′) ( 2(Z/nZ).

Let H = H
(∑

`(2W
′)
)
. By Lemma 3.1, we obtain that

|Σ`(2W ′)| ≥

 ∑
g∈(2(Z/nZ))/H

min{`, vg
(
φH(2W ′)

)
} − `+ 1

 |H| .
If h
(
φH(2W ′)

)
≤ `, then

|Σ`(2W ′)| ≥
(
|2W ′| − `+ 1

)
|H| ≥ n

2
= |2(Z/nZ)| ,

a contradiction. If there exist distinct g1, g2 ∈ (2(Z/nZ))/H such that ` <
vgk
(
φH(2W ′)

)
for all k ∈ [1, 2], then

|Σ`(2W ′)| ≥ (2`− `+ 1)|H| ≥ n

2
= |2(Z/nZ)| ,

a contradiction. Thus there exists only one element, say g ∈ (2(Z/nZ))/H,
such that vg

(
φH(2W ′)

)
> `, which implies that

vg
(
φH(2W ′)

)
≥ |2W ′|+ 1− |Σ`(2W

′)|
|H|

≥ |W ′|+ 2− n

2|H|
.

A2. If H is trivial, then |W | = n and 2W2 = (2x2)[
n
2 ] with v2x2

(2W1) = 0.
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Proof of A2. Suppose that H is trivial. Then there exists g ∈ 2(Z/nZ) such
that vg(2W

′) ≥ |W ′| + 2 − n
2 ≥ ` + 1, and then we set g = 2y for some

y ∈ Z. If max
{
v2y(2W1), v2y(2W2)

}
≤ 1, then `+ 1 ≤ v2y(2W ′) ≤ v2y(2W1) +

v2y(2W2) ≤ 2, and thus ` ≤ 1. Since ` ≥ 1, we obtain that ` = 1, and

it follows by ` = |W |
2 − 1 that |W | = n = 4 and |W1| = |W2| = 2. Since

max
{
v2y(2W1), v2y(2W2)

}
≤ 1, we obtain that 2x1 6= 2y, and hence 2 =

` + 1 ≤ v2y(2W ′) = v2y(2W2) ≤ 1, a contradiction. Thus we must have that
max

{
v2y(2W1), v2y(2W2)

}
≥ 2, and assert that min

{
v2y(2W1), v2y(2W2)

}
=

0. Assume to the contrary that min
{
v2y(2W1), v2y(2W2)

}
≥ 1. Then we may

suppose by shifting if necessary that 2y ≡ 0 (mod n), and by symmetry that
v2y(2W1) ≤ v2y(2W2). Since supp(W1) ∩ supp(W2) = ∅, we can assume that
vy(W1) = 0 and vy(W2) ≥ 2, and it follows that

σ

(
W1 · (y +

n

2
)[−1]

)
= σ

(
W2 · (y +

n

2
) · (y · y)[−1]

)
.

Thus A1 ensures that ψ(y · y) and ψ(W · (y · y)[−1]) are both product-one se-
quences, a contradiction. Hence min

{
v2y(2W1), v2y(2W2)

}
= 0, and it follows

that

`+ 1 ≤ v2y(2W ′) = max
{
v2y(2(W1 · (x1 · x3)[−1])), v2y(2W2)

}
≤ `+ 1 .

Thus v2y(2W ′) = v2y(2W2) = |W2| = ` + 1. If |W | ≥ n + 2, then ` ≥ n
2 , and

thus v2y(2W ′) ≥ |W ′|+ 2− n
2 ≥ `+ 2, a contradiction. Therefore |W | = n and

2W2 = (2y)[
n
2 ] = (2x2)[

n
2 ] with v2x2

(2W1) = 0. �

From now on, we assume that (x1, x3) is chosen to make |H| maximal.

SUBCASE 2.1. H is non-trivial.

If n = 4, then H ⊂ 2(Z/4Z) ∼= C2 implies that H = 2(Z/4Z), whence∑
`(2W

′) = 2(Z/4Z), a contradiction. Thus we can assume that n ≥ 6.
Suppose that [2(Z/nZ) : H] ≥ 3. Then |H| ≤ n

6 , and since ` ≥ n
2 − 1, we

have
vg
(
φH(2W ′)

)
≥ `+ 1 +

n

2
− n

2|H|
≥ `+ 1 + 3|H| − 3 .

Then it follows that min
{
vg
(
φH(2W1)

)
, vg
(
φH(2W2)

)}
≥ 3|H| − 3, for other-

wise, we obtain that

vg
(
φH(2W ′)

)
≤ vg

(
φH(2W1)

)
+ vg

(
φH(2W2)

)
≤ (`+ 1) + (3|H| − 4) ,

a contradiction. Moreover, we obtain that max
{
vg
(
φH(2W1)

)
, vg
(
φH(2W2)

)}
≥ 3|H| − 1, for otherwise 3|H| − 2 ≤ n

2 − 2 ≤ `− 1 implies that

vg
(
φH(2W ′)

)
≤ vg

(
φH(2W1)

)
+ vg

(
φH(2W2)

)
≤ (`− 1) + (3|H| − 2) ,

a contradiction. Then it suffices to show the case when vg
(
φH(2W1)

)
≤

vg
(
φH(2W2)

)
. Indeed the other case when vg

(
φH(2W1)

)
≥ vg

(
φH(2W2)

)
fol-

lows by an identical argument. Since g ∈ (2(Z/nZ))/H, by shifting if neces-
sary, we can assume that g = H, whence |(2W1)H | ≥ 3|H| − 3 and |(2W2)H | ≥
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3|H|−1. Since H is a non-trivial cyclic group, it follows by s(H) = 2|H|−1 that
there exist U1 |W1 and U2 |W2 such that 2U1 and 2U2 are zero-sum sequences

over H of length |U1| = |U2| = |H|. Since |
(
2(W2 · U [−1]

2 )
)
H
| ≥ 2|H| − 1,

there also exists U3 |W2 · U [−1]
2 such that 2U3 is a zero-sum sequence over

H of length |U3| = |H|. Since σ(Uk) ∈ {0, n2 } for all k ∈ [1, 3], there ex-
ist distinct i, j ∈ [1, 3] such that σ(Ui) = σ(Uj). If σ(U1) = σ(Uj) for some

j ∈ [2, 3], then σ(W1 · U [−1]
1 ) = σ(W2 · U [−1]

j ), and thus A1 implies that

ψ(U1 · Uj) and ψ
(
W · (U1 · Uj)[−1]

)
are both product-one sequences, a con-

tradiction. If σ(U2) = σ(U3), then σ
(
W1 · U [−1]

1

)
= σ

(
W2 · U1 · (U2 · U3)[−1]

)
and |W1 · U [−1]

1 | = |W |
2 − |H| = |W2 · U1 · (U2 · U3)[−1]|. Thus A1 ensures

that ψ(U2 · U3) and ψ
(
W · (U2 · U3)[−1]

)
are both product-one sequences, a

contradiction.
Hence [2(Z/nZ) : H] = 2, and we obtain that vg

(
φH(2W ′)

)
≥ |W ′|. Then

we may assume by shifting if necessary that supp(2W ′) ⊂ H, and hence
supp(W ′) ⊂ 2(Z/nZ). Since supp(W1) ∩ supp(W2) = ∅ and |W2| ≥ n

2 , we
infer in view of supp(W2) ⊂ 2(Z/nZ) that there exists y ∈ supp(W2) with
vy(W2) ≥ 2. By swapping the role between (x1, x3) and (y, y), we have
that |K| = |H

(∑
`(2W

′′)
)
| ≤ |H| by the choice of (x1, x3), where W ′′ =

W1 ·
(
W2 · (y · y)[−1]

)
. Then we assert that 2x1 ∈ H. If K is trivial, then A2

ensures that 2W1 = (2x1)[
n
2 ], and it follows by n ≥ 6 that 2x1 ∈ H. If K is

non-trivial, then we must have |K| = |H|, for otherwise [2(Z/nZ) : K] ≥ 3,
and then the argument from the beginning of SUBCASE 2.1 leads to a con-
tradiction. As two subgroups of a finite cyclic group having the same order are
equal, we obtain that K = H, and since W ′ and W ′′ share at least one term
in common (n ≥ 6), it follows that the K-coset containing supp(2W ′′) must be
H, whence 2x1 ∈ H. Thus, in all cases, we obtain that

σ(W ′) = 2σ(W2)− 2x1 ∈ H = Σ`(2W
′) ,

where the final equality follows from the fact thatH is the stabilizer of
∑
`(2W

′).
Hence there exists T |W ′ of length |T | = ` such that 2σ(T ) = σ(W ′), and thus
we infer that σ(T ) = σ(W ′ ·T [−1]) and |T | = |W ′ ·T [−1]|. Therefore A1 ensures
that ψ(x1 · x3) and ψ(W ′) are both product-one sequences, a contradiction.

SUBCASE 2.2. H is trivial.

By A2, we have 2W2 = (2x2)[
n
2 ]. If h(W2) ≥ 2, then we may assume that

x2 = x4. By swapping the role between (x1, x3) and (x2, x4), it follows by the
choice of (x1, x3) that H

(∑
`(2W

′′)
)

is also trivial, where W ′′ = W1 ·
(
W2 · (x2 ·

x4)[−1]
)
. Again by A2, we obtain that 2W1 = (2x1)[

n
2 ] with 2x1 6= 2x2.

If n = 4, then we may assume in view of h(W ) ≥ 2 that

W = W1 ·W2 = x1
[2] ·

(
x2 · (x2 + 2)

)
,
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where x1, x2 ∈ Z/4Z with 2x1 6= 2x2 (by A2); Indeed, the other possibility is

that W = W1 ·W2 = x1
[2] ·x2[2], which implies that ψ(x1 ·x1) and ψ(x2 ·x2) are

both product-one sequences, a contradiction. Since σ(W1) = σ(W2), it follows
that x1 ≡ x2 + 1 (mod 2). Thus ψ(W ) is the desired sequence for (a).

If n ≥ 6, then it follows by 2W2 = (2x2)[
n
2 ] and the Pigeonhole Principle

that h(W2) ≥ 2. Thus we obtain that 2W = (2x1)[
n
2 ] · (2x2)[

n
2 ], whence

W = W1 ·W2 =

(
x1

[v] ·
(
x1 +

n

2

)[n2−v]) ·
(
x2

[w] ·
(
x2 +

n

2

)[n2−w]
)
,

where x1, x2 ∈ Z/nZ with 2x1 6= 2x2 (by A2), and v, w ∈ [0, n2 ]. Since σ(W1) =
σ(W2), it follows that x1−x2 ≡ v−w (mod 2). All that remains is to show that
gcd(x1 − x2, n2 ) = 1. Assume to the contrary that gcd

(
x1 − x2, n2

)
= d ≥ 2.

Then we set n′ = n
2d , and since 2W ′ = (2x1)[`−1] · (2x2)[`+1], it follows by

n′(2x1 − 2x2) ≡ 0 (mod n) that

Σ`(2W
′) =

{
k(2x1 − 2x2)− 2x2 | k ∈ [0, n′ − 1]

}
.

Thus we obtain that 2x1 − 2x2 ∈ H
(∑

`(2W
′)
)

= H, and since H is trivial, it
follows that 2x1 = 2x2, a contradiction. Therefore gcd(x1 − x2, n2 ) = 1.

To prove the “In particular” statement, we assume to the contrary that
there exists a minimal product-one sequence S such that S = S1 · S2, where
S1 ∈ F

(
〈α〉
)

and S2 ∈ F
(
G\〈α〉

)
with |S2| ≥ n+2. Then we suppose that S2 =∏•

i∈[1,|S2|] α
xiτ and S1 = T1 ·T2 such that π∗(T1)(αx1τ)π∗(T2)(αx2τ · · ·αx|S2|τ)

= 1G. Since S ∈ A(G), it follows that

S′′ =
(
π∗(T1)αx1τ

)
·
(
π∗(T2)αx2τ

)
·
(∏•

i∈[3,|S2|]
αxiτ

)
∈ A

(
G \ 〈α〉

)
of length |S′′| = |S2| ≥ n+2, but this is impossible by the main statement. �

Proposition 3.3. Let G = 〈α, τ |α2n = 1G, τ
2 = αn, and τα = α−1τ〉 be a

dicyclic group, where n ≥ 2. Let S ∈ F(G) be a minimal product-one sequence
such that |S| ≥ 2n+ 2 and supp(S) ⊂ G \ 〈α〉. Then S is a sequence of length
|S| = 2n+ 2 having the form

S = (αxτ)[n+2] · S0 ,

where x ∈ [0, 2n− 1], and S0 is a sequence of length |S0| = n having one of the
following two forms :

(a) S0 = (αyτ)[2] ·αy+nτ ·αy1τ · . . . ·αyn−3τ , where n ≥ 3, y, y1, . . . , yn−3 ∈
[0, 2n − 1] such that 2y 6≡ 2x (mod 2n), 2yi 6≡ 2x (mod 2n) for all i,
and (y1 + · · ·+ yn−3) + 3y + n+ x ≡ (n+ 1)(x+ n) (mod 2n).

(b) S0 = (αyτ)[n], where y ∈ [0, 2n − 1] such that 2y 6≡ 2x (mod 2n) and
ny + x ≡ (n+ 1)(x+ n) (mod 2n).

In particular, there are no minimal product-one sequences S over G such that
S = S1 ·S2 for some S1 ∈ F

(
〈α〉
)

and S2 ∈ F
(
G\ 〈α〉

)
of length |S2| ≥ 2n+ 4.
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Proof. For every x ∈ Z, we set x = x+2nZ ∈ Z/2nZ. Let S =
∏•
i∈[1,|S|] α

xiτ ∈
A(G) be of length |S| ≥ 2n+ 2 with αx1τ · · ·αx|S|τ = 1G, where x1, . . . , x|S| ∈
[0, 2n− 1]. Since S ∈ A(G), it follows that |S| is even, and after renumbering
if necessary, we set

W = x1 · . . . · x|S| = W1 ·W2 ∈ F(Z/2nZ) ,

where W1 =
∏•
i∈[1,|S|/2] x2i−1, and W2 =

∏•
i∈[1,|S|/2] x2i. Thus we have that

σ(W1) = σ(W2)+ |W1|n. If we shift the sequence W by y for some y ∈ Z, then
the corresponding sequence S′ =

∏•
i∈[1,|S|] α

xi+yτ is still a minimal product-

one sequence. If S′ has the asserted structure, then the same is true for S
whence we may shift the sequence W whenever this is convenient. For every
subsequence U = y1 · . . . · yv of W , we denote by ψ(U) = αy1τ · . . . · αyvτ the
corresponding subsequence of S.

A1. Let U = U1 ·U2 be a subsequence of W such that |U1| = |U2| and σ(U1) =
σ(U2) + |U1|n. Then ψ(U) is a product-one sequence.

Proof of A1. Suppose that U1 = y1 · . . . · y|U1| and U2 = z1 · . . . · z|U1|. Since
σ(U1) = σ(U2) + |U1|n, it follows that

αz1ταy1τ · · ·αz|U1|ταy|U1|τ = α(z1+···+z|U1|)−(y1+···+y|U1|)+|U1|n = 1G ,

whence ψ(U) is a product-one sequence. �

If supp(W1) ∩
(

supp(W2) + n
)
6= ∅, say x1 = x2 + n, then since σ(W1) =

σ(W2)+ |W1|n, it follows by A1 that ψ(x1 ·x2) and ψ
(
W ·(x1 ·x2)[−1]

)
are both

product-one sequences, a contradiction. Therefore supp(W1) ∩
(

supp(W2) +

n
)

= ∅, and since |S| ≥ 2n+ 2, it follows that h(W ) ≥ 2.

A2. min
{
v2g(2W1), v2g(2W2)

}
≤ 1 for every g ∈ Z/2nZ.

Proof of A2. Assume to the contrary that there exists g ∈ Z/2nZ such that
min

{
v2g(2W1), v2g(2W2)

}
≥ 2. Then, for each i ∈ [1, 2], we have vg(Wi) +

vg+n(Wi) = v2g(2Wi) ≥ 2. We may assume without loss of generality that
vg(W1) ≥ 1. Since supp(W1)∩

(
supp(W2)+n

)
= ∅, we must have vg+n(W2) =

0, whence vg(W2) ≥ 2. Since supp(W1) ∩
(

supp(W2) + n
)

= ∅, we must have
vg+n(W1) = 0, whence vg(W1) ≥ 2. We set U1 = U2 = g · g. It follows that
U1 |W1 and U2 |W2 such that |U1| = |U2| with σ(U1) = σ(U2) + |U1|n, and

|W1 ·U [−1]
1 | = |W2 ·U [−1]

2 | with σ
(
W1 ·U [−1]

1

)
= σ

(
W2 ·U [−1]

2

)
+ |W1 ·U [−1]

1 |n.

Thus A1 ensures that ψ(U1 ·U2) and ψ
(
W · (U1 ·U2)[−1]

)
are both product-one

sequences, a contradiction. �

CASE 1. There exists y ∈ supp(W ) such that vy(W ) ≥ 2 and y + n ∈
supp(W ).
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In view of supp(W1)∩
(

supp(W2) + n
)

= ∅, we may assume without loss of
generality that y · (y + n) |W1. Let

W ′ = W ·
(
y · (y + n)

)[−1]
and ` =

|W ′|
2

=
|W |

2
− 1 .

If
∑
`(2W

′) = 2(Z/2nZ), then since σ(W ′) + `n = 2σ(W2) + 2`n − 2y ∈
2(Z/2nZ), it follows that there exists a subsequence T |W ′ of length |T | = `
such that 2σ(T ) = σ(W ′)+`n. Hence we infer that σ(T ) = σ(W ′ ·T [−1])+ |T |n
and |T | = |W ′ ·T [−1]|. Thus A1 ensures that ψ

(
y ·(y+n)

)
and ψ(W ′) are both

product-one sequences, a contradiction. Therefore
∑
`(2W

′) ( 2(Z/2nZ).

Let H = H
(∑

`(2W
′)
)
. By Lemma 3.1, we obtain that

|Σ`(2W ′)| ≥

 ∑
g∈(2(Z/2nZ))/H

min{`, vg
(
φH(2W ′)

)
} − `+ 1

 |H| .
If h
(
φH(2W ′)

)
≤ `, then

|Σ`(2W ′)| ≥
(
|2W ′| − `+ 1

)
|H| ≥ n = |2(Z/2nZ)| ,

a contradiction. If there exist distinct g1, g2 ∈ (2(Z/2nZ))/H such that ` <
vgk
(
φH(2W ′)

)
for all k ∈ [1, 2], then

|Σ`(2W ′)| ≥ (2`− `+ 1)|H| ≥ n = |2(Z/2nZ)| ,
a contradiction. Thus there exists only one element, say g ∈ (2(Z/2nZ))/H,
such that vg

(
φH(2W ′)

)
> `, which implies that

vg
(
φH(2W ′)

)
≥ |2W ′|+ 1− |Σ`(2W

′)|
|H|

≥ |W ′|+ 2− n

|H|
.

SUBCASE 1.1. H is non-trivial.

If [2(Z/2nZ) : H] = 2, then vg
(
φH(2W ′)

)
≥ |W ′|. We may assume by

shifting if necessary that supp(2W ′) ⊂ H, and hence supp(W ′) ⊂ 2(Z/2nZ).
Since vy(W ) ≥ 2, it follows that y ∈ supp(W ′) ⊂ 2(Z/2nZ), whence σ(W ′) +
`n = 2σ(W2) − 2y ∈ H. Thus there exists T |W ′ of length |T | = ` such that
2σ(T ) = σ(W ′) + `n, and hence we infer that σ(T ) = σ(W ′ · T [−1]) + |T |n and
|T | = |W ′ · T [−1]|. It follows by A1 that ψ

(
y · (y + n)

)
and ψ(W ′) are both

product-one sequences, a contradiction.
Therefore [2(Z/2nZ) : H] ≥ 3, and hence |H| ≤ n

3 . Since ` ≥ n, we have

vg
(
φH(2W ′)

)
≥ `+ 1 + (n+ 1)− n

|H|
≥ `+ 2 + 3|H| − 3 .

Then min
{
vg
(
φH(2W1)

)
, vg
(
φH(2W2)

)}
≥ 3|H| − 2, for otherwise, we obtain

that

vg
(
φH(2W ′)

)
≤ vg

(
φH(2W1)

)
+ vg

(
φH(2W2)

)
≤ (`+ 1) + (3|H| − 3) ,

a contradiction. Since g ∈ (2(Z/2nZ))/H, by shifting if necessary, we can
assume that g = H, whence |(2Wi)H | ≥ 3|H| − 2 for all i ∈ [1, 2]. It follows by
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s(H) = 2|H|−1 that there exist U1 |W1 and V1 |W2 of length |U1| = |V1| = |H|
such that σ(U1), σ(V1) ∈ {0, n}. Therefore |

(
2W1 · (2U1)[−1]

)
H
| ≥ 2|H|−2 and

|
(
2W2 · (2V1)[−1]

)
H
| ≥ 2|H| − 2.

Suppose that there exist U2 |W1 · U [−1]
1 and V2 |W2 · V [−1]

1 with |U2| =
|V2| = |H| and σ(U2), σ(V2) ∈ {0, n}. If there exists i ∈ [1, 2] such that
σ(Ui) = σ(Vi) + |H|n, then A1 implies that ψ(Ui · Vi) and ψ

(
W · (Ui · Vi)[−1]

)
are both product-one sequences, a contradiction. Otherwise, we have σ(U1 ·
U2) = σ(V1 · V2) + 2|H|n, whence A1 ensures that ψ(U1 · U2 · V1 · V2) and
ψ
(
W · (U1 · U2 · V1 · V2)[−1]

)
are both product-one sequences, a contradiction.

Assume that either
(
2W1 ·(2U1)[−1]

)
H

or
(
2W2 ·(2V1)[−1]

)
H

dose not contain

a zero-sum subsequence of length |H|, say 2W1 · (2U1)[−1], which then forces
|
(
2W1 ·(2U1)[−1]

)
H
| = 2|H|−2. By [16, Proposition 5.1.12], there exist h1, h2 ∈

H with ord(h1 − h2) = |H| such that
(

2W1 · (2U1)[−1]
)
H

= h
[|H|−1]
1 · h[|H|−1]2 .

Then ord(h1 − h2) = |H| ensures that

H = {h1, h2}+ · · ·+ {h1, h2}︸ ︷︷ ︸
|H|−1

= Σ|H|−1
(
h
[|H|−1]
1 · h[|H|−1]2

)
.

Thus we infer that there exist subsequences 2U3 | 2W1 ·(2U1)[−1] and 2V3 | 2W2 ·
(2V1)[−1] such that |2U3| = |2V3| = |H| − 1 and σ(2U3) = σ(2V3). Hence
σ(U3) = σ(V3) or σ(U3) = σ(V3) + n. If there exists i ∈ {1, 3} such that
σ(Ui) = σ(Vi)+|Ui|n, then A1 implies that ψ(Ui ·Vi) and ψ

(
W ·(Ui ·Vi)[−1]

)
are

both product-one sequences, a contradiction. Otherwise, we have σ(U1 ·U3) =
σ(V1 · V3) + (2|H| − 1)n, whence A1 ensures that ψ(U1 · U3 · V1 · V3) and
ψ
(
W · (U1 · U3 · V1 · V3)[−1]

)
are both product-one sequences, a contradiction.

SUBCASE 1.2. H is trivial.

Since ` = |W ′|
2 ≥ n, it follows that vg(2W

′) ≥ |W ′| + 2 − n ≥ ` + 2.

Hence A2 ensures that min
{
vg(2W1), vg(2W2)

}
= 1. If g = 2y, it follows by

y ·(y+n) |W1 that vg(2W2) = 1, whence `+2 ≤ vg(2W
′) = vg(2W1)−2+1 ≤ `,

a contradiction. Thus g 6= 2y. Since

`+ 2 ≤ vg(2W
′) = vg

(
2
(
W1 · (y · (y + n))[−1]

))
+ vg(2W2) ,

we have vg(2W1) = 1 and vg(2W2) = ` + 1. Then vg(2W
′) = ` + 2. If |W | ≥

2n+4, then ` ≥ n+1, and hence vg(2W
′) ≥ |W ′|+2−n ≥ `+3, a contradiction.

Therefore |W | = 2n + 2, ` = n, 2W2 = (2x)[n+1], and v2x(2W1) = 1 for some
x ∈ Z/2nZ with 2x = g 6= 2y.

Since supp(W1)∩
(

supp(W2)+n
)

= ∅, we may assume that W2 = x[n+1] and
vx(W1) = 1. It follows by vy(W ) ≥ 2 and |W1| = n+1 that x ·y ·y ·(y+n) |W1.
Then n ≥ 3 and

W = W1 ·W2 = (x · T ) · x[n+1] ,
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where T ∈ F
(
Z/2nZ

)
with |T | = n such that 2x /∈ supp(2T ) and y[2]·(y+n) |T .

Since σ(W1) = σ(W2) + |W1|n, it follows that σ(T ) + x = (n+ 1)x+ (n+ 1)n.
Therefore ψ(W ) is the desired sequence for (a).

CASE 2. For every x ∈ supp(W ) with vx(W ) ≥ 2, we have that x + n /∈
supp(W ).

If h(2W ) ≤ 2, then we have

2n+ 2 ≤ |W | = |2W | ≤ h(2W )|2(Z/2nZ)| ≤ 2n ,

a contradiction, and from the case hypothesis, we have h(W ) = h(2W ) ≥ 3.
Let x ∈ supp(W ) be an element with vx(W ) = h(W ) ≥ 3, and assume without
loss of generality that

vx(W1) ≥ vx(W2) with vx(W1) ≥ 2 .

If h(W · (x · x)[−1]) ≤ 1, then it follows by the case hypothesis that

2n ≤ |W | − 2 = |W · (x · x)[−1]| ≤ |(Z/2nZ) \ {x+ n}| = 2n− 1 ,

a contradiction, whence h(W · (x · x)[−1]) ≥ 2. Let y ∈ supp(W · (x · x)[−1]) be
an element with vy(W · (x · x)[−1]) ≥ 2, and let

W ′ = W · (x · x · y · y)[−1] and ` =
|W ′|

2
=
|W |

2
− 2 .

Suppose in addition that y is chosen to satisfy either that vy(W · (x · x)[−1]) =

h(W · (x · x)[−1]), or that both vy(W2) ≥ 3 and h(W ) ≤ `+ 2.
If
∑
`(2W

′) = 2(Z/2nZ), then since σ(W ′)+`n = 2σ(W2)+(2`+2)n−2x−
2y ∈ 2(Z/2nZ), it follows that there exists a subsequence T |W ′ of length |T | =
` such that 2σ(T ) = σ(W ′) + `n. Hence we infer σ(T ) = σ(W ′ · T [−1]) + |T |n
and |T | = |W ′ ·T [−1]|. Thus A1 ensures that ψ

(
x[2] · y[2]

)
and ψ(W ′) are both

product-one sequences, a contradiction. Therefore
∑
`(2W

′) ( 2(Z/2nZ).

Let H = H
(∑

`(2W
′)
)
. As at the start of the proof of CASE 1, it follows

by Lemma 3.1 that there exists only one element, say g ∈ (2(Z/2nZ))/H, such
that vg

(
φH(2W ′)

)
≥ `+ 1, which implies that

vg
(
φH(2W ′)

)
≥ |2W ′|+ 1− |Σ`(2W

′)|
|H|

≥ |W ′|+ 2− n

|H|
.

SUBCASE 2.1. H is non-trivial.

If n = 2, then H ⊂ 2(Z/4Z) ∼= C2 implies that H = 2(Z/4Z), whence∑
`(2W

′) = 2(Z/4Z), a contradiction. Thus we can assume that n ≥ 3.

If [2(Z/2nZ) : H] = 2, then vg
(
φH(2W ′)

)
≥ |W ′|. We may assume by

shifting if necessary that supp(2W ′) ⊂ H, and hence supp(W ′) ⊂ 2(Z/2nZ).
We assert that σ(W ′) + `n = 2σ(W2) − 2x − 2y ∈ H. Clearly this holds
true for x = y. Suppose x 6= y. Since vx(W ) = h(W ) ≥ 3, it follows that
x ∈ supp(W ′) ⊂ 2(Z/2nZ). If vy(W2) ≥ 3, then y ∈ supp(W ′) ⊂ 2(Z/2nZ).
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Suppose that vy(W · (x · x)[−1]) = h(W · (x · x)[−1]), and we need to verify
y ∈ supp(W ′) ⊂ 2(Z/2nZ). If h(2W ′) ≤ 2, then

2n− 2 ≤ |W ′| = |2W ′| ≤ h(2W ′)|H| ≤ n ,

a contradiction to n ≥ 3. Hence, in view of the main case hypothesis, we have
h(W ′) = h(2W ′) ≥ 3. Since h(W · (x · x)[−1]) ≥ h(W ′) ≥ 3, it follows that
y ∈ supp(W ′) ⊂ 2(Z/2nZ). Thus σ(W ′) + `n ∈ H, which implies that there
exists a subsequence T |W ′ of length |T | = ` such that 2σ(T ) = σ(W ′) + `n.
Then σ(T ) = σ(W ′ ·T [−1]) + |T |n and |T | = |W ′ ·T [−1]|. It follows by A1 that

ψ
(
x[2] · y[2]

)
and ψ(W ′) are both product-one sequences, a contradiction.

Therefore [2(Z/2nZ) : H] ≥ 3, and hence |H| ≤ n
3 . Since ` = |W ′|

2 ≥ n− 1,
we have

vg
(
φH(2W ′)

)
≥ `+ 1 + n− n

|H|
≥ `+ 1 + 3|H| − 3 .

We assert that min
{
vg
(
φH(2W1)

)
, vg
(
φH(2W2)

)}
≥ 3|H| − 2. Assume to the

contrary that min
{
vg
(
φH(2W1)

)
, vg
(
φH(2W2)

)}
≤ 3|H|−3. If vg

(
φH(2W2)

)
≤

`, then vx(W1) ≥ 2 implies that

vg
(
φH(2W ′)

)
≤ vg

(
φH
(
2(W1 · (x · x)[−1])

))
+ vg

(
φH(2W2)

)
≤ `+ 3|H| − 3 ,

a contradiction. Thus vg
(
φH(2W2)

)
≥ `+ 1 ≥ n, and hence h(2W2) ≥ n

|H| ≥ 3.

The main case hypothesis ensures that h(W2) = h(2W2) ≥ 3. If vy(W2) ≥ 2,

then vg
(
φH(2W ′)

)
= vg

(
φH
(
2(W1 ·(x·x)[−1]

)))
+vg

(
φH
(
2(W2 ·(y·y)[−1]

)))
≤

` + 3|H| − 3, a contradiction. Suppose that vy(W2) ≤ 1. Then we infer that

vy(W · (x · x)[−1]) = h(W · (x · x)[−1]). It follows by h(W2) ≥ 3 that there
exists z ∈ supp(W2) with vz(W2) = h(W2) ≥ 3. Then we assert that vx(W ) =
h(W ) ≤ ` + 2. Assume to the contrary that vx(W ) = h(W ) ≥ ` + 3. Since

vx(W1) ≥ 2, A2 implies W1 = x[`+2] with vx(W2) = 1, whence y = x. By
the main case hypothesis, we have v2x(2W ′) = vx(W ′) = ` − 1. Since g ∈
(2(Z/2nZ))/H is the only element satisfying vg

(
φH(2W ′)

)
≥ ` + 1 ≥ 3, it

follows again by the main case hypothesis that g = 2z, W2 = x · z[`+1], and
vz(W · (x · x)[−1]) = h(W · (x · x)[−1]). By swapping the role between y and z,
the argument used in the case above when vy(W2) ≥ 2 leads to a contradiction.
Thus vx(W ) = h(W ) ≤ ` + 2, and then the swapping argument again leads
to a contradiction. Since g ∈ (2(Z/2nZ))/H, by shifting if necessary, we can
assume that g = H, whence |(2Wi)H | ≥ 3|H| − 2 for all i ∈ [1, 2]. By the same
lines of the proof of SUBCASE 1.1, we get a contradiction to S ∈ A(G).

SUBCASE 2.2. H is trivial.

Since ` = |W ′|
2 ≥ n − 1, it follows that vg(2W

′) = vg
(
φH(2W ′)

)
≥ |W ′| +

2− n ≥ `+ 1, and by A2,

h(2W ) = v2x(2W ) = v2x(2W1) + v2x(2W2) ≤ (`+ 2) + 1 = `+ 3 .

Thus we have v2x(2W ′) ≤ v2x(2W )− 2 ≤ `+ 1.
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Suppose that ` = 1. Then |W | = 6, n = 2, and |2W ′| = 2. Hence vg(2W
′) =

2 and W = x[2] · y[2] ·w1 ·w2 for some w1, w2 ∈ Z/2nZ with 2w1 = 2w2 = g. If

w1 = w2 +n, then ψ(w1 ·w2) and ψ
(
x[2] ·y[2]

)
are both product-one sequences,

a contradiction. Therefore w1 = w2. Since ord(αiτ) = 4 for all i ∈ [0, 2n − 1]
and ψ(W ) is a product-one sequence, we obtain that |{x, y, w1}| ≥ 2. Since
vx(W ) = h(W ) ≥ 3 and h

(
W · (x · x)[−1]

)
≥ 2, it follows that either x = y or

x = w1. Since σ(W1) = σ(W2) + |W1|n, we have

W = W1 ·W2 = x[3] ·
(
x · w[2]

)
for some w ∈ Z/4Z with 2w 6= 2x. Thus ψ(W ) is the desired sequence for (b).

Suppose that ` ≥ 2. We assume to the contrary that vy(W2) ≥ 3 and
h(W ) ≤ ` + 2. Since v2x(2W ) = vx(W ) ≤ ` + 2, it follows that v2x(2W ′) ≤ `,
whence g 6= 2x. In view of vx(W1) ≥ 2, vy(W2) ≥ 2, and A2, we must have
2y 6= 2x. Let g = 2z for some z ∈ Z/2nZ. If g 6= 2y, then by the main case
hypothesis, x, y and z are all distinct elements with vx(W ) ≥ vz(W ) ≥ ` + 1
and vy(W ) ≥ 3, implying 2`+ 4 = |W | ≥ 2(`+ 1) + 3 = 2`+ 5, a contradiction.
Thus g = 2y, and again by the main case hypothesis, we have z = y. Hence
vy
(
W · (x · x)[−1]

)
= vz(W

′) + 2 ≥ `+ 3, contradicting that h(W ) ≤ `+ 2.

Therefore vy
(
W · (x · x)[−1]

)
= h

(
W · (x · x)[−1]

)
, and in view of the main

case hypothesis, we have

3 ≤ `+ 1 ≤ vg(2W
′) ≤ v2y

(
2
(
W · (x · x)[−1]

))
≤ v2x(2W ) .

Then it follows by |2W | = 2` + 4 and h(2W ) ≤ ` + 3 that |{2x, 2y, g}| = 2.
If 2y = g, then 2x 6= 2y and v2x(2W ) ≥ v2y(2W ) ≥ ` + 3, whence 2` + 4 =
|2W | ≥ 2`+ 6, a contradiction. Thus 2y 6= g.

If 2x = 2y, then v2x(2W ) = 2 + v2y
(
2
(
W · (x · x)[−1]

))
≥ `+ 3 implies that

v2x(2W ) = `+ 3 and vg(2W
′) = `+ 1. If |W | ≥ 2n+ 4, then ` ≥ n, and hence

`+1 = vg(2W
′) ≥ |W ′|+2−n ≥ `+2, a contradiction. Thus |W | = 2n+2 and

` = n− 1. Since vx(W1) ≥ vx(W2), we have v2x(2W1) ≥ v2x(2W2), and hence
A2 ensures that v2x(2W2) = 1. It follows in view of the main case hypothesis
that

W = W1 ·W2 = x[n+1] ·
(
x · z[n]

)
,

where z ∈ Z/2nZ with 2z = g 6= 2x. Since σ(W1) = σ(W2) + |W1|n, we have
nz+x ≡ (n+ 1)(x+n) (mod 2n). Therefore ψ(W ) is the desired sequence for
(b).

If 2x = g, then v2x(2W ) ≥ 2 + vg(2W
′) ≥ ` + 3 implies that v2x(2W ) =

` + 3 and v2y(2W ) = ` + 1. The same argument as shown above ensures that

W = W1 · W2 = x[n+1] ·
(
x · y[n]

)
, where x, y ∈ Z/2nZ with 2x 6= 2y, and

ny+x ≡ (n+ 1)(x+n) (mod 2n). Thus ψ(W ) is the desired sequence for (b).
To prove the “In particular” statement, we assume to the contrary that there

exists a minimal product-one sequence S such that S = S1 · S2, where S1 ∈
F
(
〈α〉
)

and S2 ∈ F
(
G\〈α〉

)
of length |S2| ≥ 2n+4. Then we suppose that S2 =∏•

i∈[1,|S2|] α
xiτ and S1 = T1 ·T2 such that π∗(T1)(αx1τ)π∗(T2)(αx2τ · · ·αx|S2|τ)
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= 1G. Since S ∈ A(G), it follows that

S′′ =
(
π∗(T1)αx1τ

)
·
(
π∗(T2)αx2τ

)
·
(∏•

i∈[3,|S2|]
αxiτ

)
∈ A

(
G \ 〈α〉

)
and |S′′| = |S2| ≥ 2n+ 4, a contradiction to the main statement. �

4. The main results

Theorem 4.1. Let G be a dihedral group of order 2n, where n ∈ N≥3 is odd.
A sequence S over G of length D(G) is a minimal product-one sequence if and
only if it has one of the following two forms :

(a) There exist α, τ ∈ G such that G = 〈α, τ |αn = τ2 = 1G and τα =
α−1τ〉 and S = α[2n−2] · τ [2].

(b) There exist α, τ ∈ G and i, j ∈ [0, n− 1] with gcd(i− j, n) = 1 such that
G = 〈α, τ |αn = τ2 = 1G and τα = α−1τ〉 and S = (αiτ)[n] · (αjτ)[n].

Proof. We fix α, τ ∈ G such that G = 〈α, τ |αn = τ2 = 1G and τα = α−1τ〉.
Then

G =
{
αi | i ∈ [0, n− 1]

}
∪
{
αiτ | i ∈ [0, n− 1]

}
.

LetG0 = G\〈α〉. If |SG0
| = 0, then S ∈ F

(
〈α〉
)
, and since |S| = 2n > D

(
〈α〉
)

=
n, it follows that S is not a minimal product-one sequence, a contradiction.
Since S is a product-one sequence, we have that |SG0

| is even. We distinguish
three cases depending on |SG0

|.

CASE 1. |SG0 | = 2.

Then we may assume by changing generating set if necessary that S =
T1 · τ · T2 · (αxτ) with π∗(T1)(τ)π∗(T2)(αxτ) = 1G, where x ∈ [0, n − 1] and
T1, T2 ∈ F

(
〈α〉
)
. Since S ∈ A(G), it follows that T1 and T2 must be both

product-one free sequences, and thus |T1| = |T2| = n−1. Then we may assume
by Lemma 2.2.1 that

T1 = α[n−1] and T2 = (αj)[n−1] ,

where j ∈ [0, n − 1] with gcd(j, n) = 1. Since π∗(T1)(τ)π∗(T2)(αxτ) = 1G, it
follows that −1 ≡ −j + x (mod n), and thus it suffices to show that x = 0;
Indeed, if this holds, then j = 1, whence S = α[2n−2] · τ [2] which is the desired
sequence for (a).

Assume to the contrary that x ∈ [1, n− 1] so that j 6= 1.

SUBCASE 1.1. j is even.

Let S1 = αj · α[n−j] ∈ B(G). Since j is even and n is odd, −1 ≡ −j + x
(mod n) implies that

S2 = α[ j−2
2 ] · (αj)[

n−3
2 ] · (αj · τ) · α[ j−2

2 ] · (αj)[
n−3
2 ] · (α · αxτ) ∈ B(G) ,

whence S = S1 · S2 contradicts that S ∈ A(G).

SUBCASE 1.2. j is odd.
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Since −1 ≡ −j + x (mod n), we obtain that x = j − 1, whence x is even.
Then n− 1− x is even, and we obtain that(

α[n−1−x
2 ](αj)[

n−1
2 ]α[x]

)
τ
(
α[n−1−x

2 ](αj)[
n−1
2 ]
)
αxτ = 1G .

Let S1 = α[n−1−x
2 ] · (αj)[

n−1
2 ] · α[x] ∈ F

(
〈α〉
)
. Since x is even, it follows that

|S1| = n−1+ x
2 ≥ n, and hence S1 has a product-one subsequence W . Thus W

and S ·W [−1] are both product-one sequences, contradicting that S ∈ A(G).

CASE 2. |SG0 | ∈ [4, 2n− 2].

Then we may assume by changing generating set if necessary that S = T1 ·τ ·
T2 ·T3 ·(αxτ), where x ∈ [0, n−1], T1, T2 ∈ F

(
〈α〉
)
, and T3 ∈ F(G0) with |T3| =

|SG0
| − 2. Moreover, we suppose that π∗(T1)(τ)π∗

(
T2 · T ′3

)
(αxτ) = 1G, where

T3 =
∏•
i∈[1,|T3|] gi is an ordered sequence and T ′3 =

∏•
i∈[1,|T3|/2](g2i−1g2i) ∈

F
(
〈α〉
)
. Then T1 and T2 · T ′3 are both product-one free sequences and

|T1 · T2 · T ′3| =
(

2n− |SG0 |
)

+
|SG0 | − 2

2
≥ n .

Let T1 = p1 · . . . · p|T1|, T2 = f1 · . . . · f|T2|, and T ′3 = q1 · . . . · q|T ′3|. Then we
consider

• H1 =
{
p1, p1p2, . . . , (p1 · · · p|T1|)

}
, and

• H2 =
{
q1, q1q2, . . . , (q1 · · · q|T ′3|), (q1 · · · q|T ′3|f1), (q1 · · · q|T ′3|f1f2),

(q1 · · · q|T ′3|f1f2f3), . . . , (q1 · · · q|T ′3|f1 · · · f|T2|)
}

.

Since both T1 and T2·T ′3 are product-one free, it follows thatH1, H2 ⊂ 〈α〉\{1G}
with |H1| = |T1|, |H2| = |T2 · T ′3|, and |H1| + |H2| = |T1 · T2 · T ′3| ≥ n.
Since |〈α〉| = n, we obtain that H1 ∩ H2 6= ∅, and hence we infer that there
exist W1 |T1, W2 |T2, and W ′3 |T ′3 such that W ′3 is a non-trivial sequence and
π∗(W1) = π∗(W2·W ′3). Let W3 denote the corresponding subsequence of T3 and
assume that W3 = (αy1τ) ·(αy2τ) ·W ′′3 . Then Z = W2 ·(αy1τ) ·W1 ·(αy2τ) ·W ′′3
and S · Z [−1] are both product-one sequences, contradicting that S ∈ A(G).

CASE 3. |SG0
| = 2n.

Since |S| = 2n = |SG0
|, we may assume that

S = αk1τ · α`1τ · . . . · αknτ · α`nτ with αk1τα`1τ · · ·αknτα`nτ = 1G ,

where k1, . . . , kn, `1, . . . , `n ∈ [0, n− 1]. Then we set S′ = ak1−`1 · . . . ·akn−`n ∈
B
(
〈α〉
)

of length |S′| = n. Since S ∈ A(G), it follows that S′ ∈ A
(
〈α〉
)
, and

by applying Lemma 2.2.1,

(4.1) k1 − `1 ≡ k2 − `2 ≡ · · · ≡ kn − `n (mod n)

with gcd(ki − `i, n) = 1 for all i ∈ [1, n]. Let j ∈ [1, n − 1]. Then we observe
that

αkjτα`jταkj+1τ = αkj−`j+kj+1τ = αkj+1τα`jταkjτ .

By swapping the role between αkjτ and αkj+1τ , we obtain that

S′′ = αk1−`1 · . . . · αkj+1−`j · αkj−`j+1 · . . . · αkn−`n ∈ A
(
〈α〉
)
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of length |S′′| = n. Hence it follows again by applying Lemma 2.2.1 that

k1 − `1 ≡ · · · ≡ kj+1 − `j ≡ kj − `j+1 ≡ · · · ≡ kn − `n (mod n) ,

and thus (4.1) ensures that kj = kj+1, whence k1 = k2 = · · · = kn. Similarly

we also obtain that `1 = `2 = · · · = `n, whence S = (αk1τ)[n] · (α`1τ)[n] with
gcd(k1 − `1, n) = 1, which is the desired sequence for (b). �

Theorem 4.2. Let G be a dihedral group of order 2n, where n ∈ N≥4 is even. A
sequence S over G of length D(G) is a minimal product-one sequence if and only
if there exist α, τ ∈ G such that G = 〈α, τ |αn = τ2 = 1G and τα = α−1τ〉
and S = α[n+n

2−2] · τ · (α
n
2 τ).

Proof. We fix α, τ ∈ G such that G = 〈α, τ |αn = τ2 = 1G and τα = α−1τ〉.
Then

G =
{
αi | i ∈ [0, n− 1]

}
∪
{
αiτ | i ∈ [0, n− 1]

}
.

Let G0 = G \ 〈α〉. If |SG0 | = 0, then S ∈ F
(
〈α〉
)
, and since |S| = n +

n
2 > D

(
〈α〉
)

= n, it follows that S is not a minimal product-one sequence, a
contradiction. Since S is a product-one sequence, Proposition 3.2 ensures that
|SG0 | ∈ [2, n] is even. We distinguish two cases depending on |SG0 |.

CASE 1. |SG0 | = 2.

Then we may assume by changing generating set if necessary that S =
T1 · τ · T2 · (αxτ) with π∗(T1)(τ)π∗(T2)(αxτ) = 1G, where x ∈ [0, n − 1] and
T1, T2 ∈ F

(
〈α〉
)
. Since S ∈ A(G), it follows that T1 and T2 must be both

product-one free sequences.
If |T1| ≥ n

2 and |T2| ≥ n
2 , then T 2

1 and T 2
2 ∈ F

(
〈α2〉

)
(see (3.1)) with |T 2

1 | ≥ n
2

and |T 2
2 | ≥ n

2 , and it follows by D
(
〈α2〉

)
= n

2 that there exist W1 |T1 and W2 |T2
such that W 2

1 and W 2
2 are product-one sequences over 〈α2〉. Since T1 and T2

are product-one free, we obtain that π∗(W1) = α
n
2 = π∗(W2). Therefore

W1 ·W2 and S · (W1 ·W2)[−1] are both product-one sequences, contradicting
that S ∈ A(G).

Thus either |T1| ≤ n
2−1 or |T2| ≤ n

2−1, and we may assume that |T1| = n
2−1

and |T2| = n− 1. Then Lemma 2.2.1 implies that T2 = (αj)[n−1] for some odd
j ∈ [1, n−1]. Then we may assume by changing generating set if necessary that
j = 1 so that S = T3 · τ · α[n−1] · (αyτ), where y ∈ [0, n− 1] and T3 ∈ F

(
〈α〉
)
.

Since T3 · α · τ · (αyτ) is a product-one sequence, we have that

T3 · α[n2 ] · τ · α[n2−1] · (αyτ) ∈ B(G) .

It follows that T3 ·α[n2 ] is a product-one free sequence of length n−1, and again
by Lemma 2.2.1 that T3 = α[n2−1]. Since (n2 − 1) ≡ (n − 1) + y (mod n), we
infer that y = n

2 , and the assertion follows.

CASE 2. |SG0
| ∈ [4, n].

SUBCASE 2.1. n = 4.
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Then we may assume by changing generating set if necessary that S =
αr1 · αr2 · τ · αxτ · αyτ · αzτ for some r1, r2 ∈ [1, 3] and x, y, z ∈ [0, 3]. If
αr1αr2ταxταyταzτ = 1G, then S′ = αr1 · αr2 · α−x · αy−z ∈ A

(
〈α〉
)
, and

hence it follows by applying Lemma 2.2.1 that r1 ≡ r2 ≡ −x ≡ y − z ≡ j
(mod 4) for some odd j ∈ [1, 3]. Thus S = S1 · S2, where S1 = τ · αr1 · αxτ
and S2 = αyτ · αr2 · αzτ are both product-one sequences, contradicting that
S ∈ A(G). Thus we can assume that αr1ταr2αxταyταzτ = 1G, and we consider

S′′ = αr1 · α−r2 · τ · αxτ · αyτ · αzτ ∈ B(G) .

Then, by the same argument as shown above, we obtain that S′′ /∈ A(G).
Let S′′ = U1 · U2 for some U1, U2 ∈ B(G). Since S is a minimal product-one
sequence, we must have that

U1 = αr1 · α−r2 and U2 = τ · αxτ · αyτ · αzτ
are both minimal product-one sequences, whence we obtain that r1 = r2. Since
U2 ∈ A(G), Proposition 3.2 implies that

U2 = τ · ατ · α2τ · α3τ or U2 = (αx1τ)[2] · αy1τ · αy1+2τ ,

where x1, y1 ∈ [0, 3] with x1 ≡ y1 + 1 (mod 2). Since S ∈ A(G), we obtain
that either r1 = r2 = 1 or r1 = r2 = 3. If r1 = r2 = 1, then

S = (α ·τ ·ατ) ·(α ·α2τ ·α3τ) or S = (α ·αx1τ ·αy1τ) ·(αx1τ ·α ·αy1+2τ) ,

contradicting that S ∈ A(G). If r1 = r3 = 3, then

S = (τ ·α3·ατ)·(α2τ ·α3·α3τ) or S = (α3·αx1τ ·αy1τ)·(αx1τ ·α3·αy1+2τ) ,

contradicting that S ∈ A(G).

SUBCASE 2.2. n ≥ 6.

Then we may assume by changing generating set if necessary that S =
T1 · τ · T2 · T3 · (αxτ), where x ∈ [0, n − 1], T1, T2 ∈ F

(
〈α〉
)

with |T2| ≥
|T1| ≥ 0, and T3 ∈ F(G0) with |T3| = |SG0

| − 2. Moreover, we suppose
that π∗(T1)(τ)π∗

(
T2 · T ′3

)
(αxτ) = 1G, where T3 =

∏•
i∈[1,|T3|] gi is an ordered

sequence and T ′3 =
∏•
i∈[1,|T3|/2](g2i−1g2i) ∈ F

(
〈α〉
)
. Then T1 and T2 · T ′3 are

both product-one free sequences and

|T1 · T2 · T ′3| =
(
n+

n

2
− |SG0

|
)

+
|SG0 | − 2

2
≥ n− 1 .

If |T1·T2·T ′3| ≥ n, then we infer that there exist subsequencesW1 |T1, W2 |T2,
and W ′3 |T ′3 such that W ′3 is a non-trivial sequence (this follows by the same
argument as used in CASE 2 of Theorem 4.1) and π∗(W1) = π∗

(
W2 ·W ′3

)
.

Let W3 denote the corresponding subsequence of T3 and assume that W3 =
(αy1τ) · (αy2τ) ·W ′′3 . Then Z = W2 · (αy1τ) ·W1 · (αy2τ) ·W ′′3 and S ·Z [−1] are
both product-one sequences, contradicting that S ∈ A(G).

Suppose that |T1 · T2 · T ′3| = n− 1. Then |T ′3| = n
2 − 1 and |T2| ≥ n

4 . Since

T2 · T ′3 is a product-one free sequence with |T2 · T ′3| ≥ 3n
4 − 1 ≥ n+1

2 , it follows
by Lemma 2.2 that T2 · T ′3 is g-smooth for some g ∈ 〈α〉 with ord(g) = n, and
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for every z ∈ Π(T2 · T ′3), there exists a subsequence W |T2 · T ′3 with g |W such
that π∗(W ) = z. Since |T ′3| = n

2 − 1, Lemma 2.2.3 implies that g |T ′3.
If Π(T1) ∩ Π(T2 · T ′3) 6= ∅, then there exist subsequences W1 |T1, W2 |T2,

and W ′3 |T ′3 such that W ′3 is a non-trivial sequence (this follows from the above
paragraph that we can chooseW2·W ′3 |T2·T ′3 such that g |W2·W ′3 and g |T ′3) and
π∗(W1) = π∗(W2·W ′3). Let W3 denote the corresponding subsequence of T3 and
assume that W3 = (αy1τ) ·(αy2τ) ·W ′′3 . Then Z = W2 ·(αy1τ) ·W1 ·(αy2τ) ·W ′′3
and S · Z [−1] are both product-one sequences, contradicting that S ∈ A(G).
Hence Π(T1)∩Π(T2 · T ′3) = ∅, and it follows that T−11 · T2 · T ′3 is a product-one
free sequence of length n−1. By Lemma 2.2.1, there exists an odd j ∈ [1, n−1]
such that

T−11 · T2 · T ′3 =
(
αj
)[n−1]

,

and we may assume by changing generating set if necessary that j = 1 so that
x = 1. If |T1| ≥ 1, then(

α · α−1
)[|T1|]

and α[1+
n−2−2|T1|

2 ] · τ · α[
n−2−2|T1|

2 ] · ατ
are both product-one sequences, contradicting that S ∈ A(G). Thus |T1| = 0,

and then we obtain that T3 =
(
αr+1τ · αrτ

)[n2−1] for some r ∈ [0, n − 1]
(this follows by the swapping argument as used in CASE 3 of Theorem 4.1).
This implies that S = (α · τ · ατ) · (αr+1τ · α · αrτ)[

n
2−1], contradicting that

S ∈ A(G). �

Theorem 4.3. Let G be a dicyclic group of order 4n, where n ≥ 2. A sequence
S over G of length D(G) is a minimal product-one sequence if and only if there
exist α, τ ∈ G such that G = 〈α, τ |α2n = 1G, τ

2 = αn, and τα = α−1τ〉 and
S = α[3n−2] · τ [2].

Proof. We fix α, τ ∈ G such that G = 〈α, τ |α2n = 1G, τ
2 = αn, and τα =

α−1τ〉. Then

G =
{
αi | i ∈ [0, 2n− 1]

}
∪
{
αiτ | i ∈ [0, 2n− 1]

}
.

LetG0 = G\〈α〉. If |SG0 | = 0, then S ∈ F
(
〈α〉
)
, and since |S| = 3n > D

(
〈α〉
)

=
2n, it follows that S is not a minimal product-one sequence, a contradiction.
Since S is a product-one sequence, Proposition 3.3 ensures that |SG0

| ∈ [2, 2n+
2] is even. We distinguish two cases depending on |SG0

|.
CASE 1. |SG0

| = 2.

Then we may assume by changing generating set if necessary that S =
T1 · τ · T2 · (αxτ) with π∗(T1)(τ)π∗(T2)(αxτ) = 1G, where x ∈ [0, 2n − 1] and
T1, T2 ∈ F

(
〈α〉
)
. Since S ∈ A(G), it follows that T1 and T2 must be both

product-one free sequences.
If |T1| ≥ n and |T2| ≥ n, then T 2

1 and T 2
2 ∈ F

(
〈α2〉

)
(see (3.1)) with

|T 2
1 | ≥ n and |T 2

2 | ≥ n, and it follows by D
(
〈α2〉

)
= n that there exist W1 |T1

and W2 |T2 such that W 2
1 and W 2

2 are product-one sequence over 〈α2〉. Since T1
and T2 are product-one free, we obtain that π∗(W1) = αn = π∗(W2). Therefore
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W1 ·W2 and S · (W1 ·W2)[−1] are both product-one sequences, contradicting
that S ∈ A(G).

Thus either |T1| ≤ n−1 or |T2| ≤ n−1, and we may assume that |T1| = n−1
and |T2| = 2n−1. Then Lemma 2.2.1 implies that T2 = (αj)[2n−1] for some odd
j ∈ [1, 2n − 1]. Then we may assume by changing generating set if necessary
that j = 1 so that S = T3 · τ · α[2n−1] · (αyτ), where y ∈ [0, 2n − 1] and
T3 ∈ F

(
〈α〉
)
. Since T3 · α · τ · (αyτ) is a product-one sequence, we have that

T3 · α[n] · τ · α[n−1] · (αyτ) ∈ B(G) .

It follows that T3 · α[n] is a product-one free sequence of length 2n − 1, and
again by Lemma 2.2.1 that T3 = α[n−1]. Since (n − 1) ≡ (2n − 1) + y + n
(mod 2n), we infer that y = 0, and the assertion follows.

CASE 2. |SG0
| ∈ [4, 2n+ 2].

SUBCASE 2.1. n = 2.

Then G = Q8 is the quaternion group. If |SG0
| = 6, then by Proposition

3.3, we have that

S = (αxτ)[4] · (αyτ)[2]

where x, y ∈ [0, 3] such that 2x 6≡ 2y (mod 4) and 2y + x ≡ 3(x+ 2) (mod 4).
Since 2y ≡ 2x + 2 (mod 4), it follows by letting α1 = αxτ and τ1 = αyτ that

S = α
[4]
1 · τ [2]1 , where G = 〈α1, τ1 |α4

1 = 1G, τ
2
1 = α2

1, and τ1α1 = α−11 τ1〉,
whence the assertion follows.

Suppose that |SG0
| = 4, and we may assume by changing generating set if

necessary that S = αr1 ·αr2 ·τ ·αxτ ·αyτ ·αzτ for some r1, r2 ∈ [1, 3] and x, y, z ∈
[0, 3]. If αr1αr2ταxταyταzτ = 1G, then S′ = αr1 ·αr2 ·α−x+2·αy−z+2 ∈ A

(
〈α〉
)
,

and hence it follows by applying Lemma 2.2.1 that r1 ≡ r2 ≡ −x+ 2 ≡ y− z+
2 ≡ j (mod 4) for some odd j ∈ [1, 3]. Thus S = S1 ·S2, where S1 = αr1 ·αxτ ·τ
and S2 = αr2 · αzτ · αyτ are both product-one sequences, contradicting that
S ∈ A(G). Hence we can assume that αr1ταr2αxταyταzτ = 1G, and we
consider

S′′ = αr1 · α−r2 · τ · αxτ · αyτ · αzτ ∈ B(G) .

Then, by the same argument as shown above, we obtain that S′′ /∈ A(G).
Let S′′ = U1 · U2 for some U1, U2 ∈ B(G). Since S is a minimal product-one
sequence, we must have that

U1 = αr1 · α−r2 and U2 = τ · αxτ · αyτ · αzτ

are both minimal product-one sequences. Then r1 = r2, and we may assume
that ταxταyταzτ = 1G. Then U2 ∈ A(G) implies that α−x+2 · αy−z+2 ∈
A
(
〈α〉
)
, whence x ≡ y− z (mod 4). Since (α2τ · τ) · (α2τ · τ) is not a minimal

product-one sequence, it follows by case distinction on x, y, z that we have

U2 ∈
{
τ [4], τ [2] · (ατ)[2], τ [2] · (α3τ)[2], τ [2] · ατ · α3τ,

τ · (ατ)[2] · α2τ, τ · α2τ · (α3τ)[2], τ · ατ · α2τ · α3τ
}
.
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Since S ∈ A(G), we can assume by changing the generator α for α3 if necessary
that r1 = r2 = 1, and thus we must have U2 = τ [4], for otherwise, S is the
product of two product-one sequences, a contradiction. By letting α1 = τ and

τ1 = αr1 , we obtain that S = α
[4]
1 · τ [2]1 , where G = 〈α1, τ1 |α4

1 = 1G, τ
2
1 =

α2
1, and τ1α1 = α−11 τ1〉, whence the assertion follows.

SUBCASE 2.2. n ≥ 3.

Then we may assume by changing generating set if necessary that S =
T1 · τ · T2 · T3 · αxτ , where x ∈ [0, 2n − 1], T1, T2 ∈ F

(
〈α〉
)

with |T2| ≥
|T1| ≥ 0, and T3 ∈ F(G0) with |T3| = |SG0 | − 2. Moreover, we suppose
that π∗(T1)(τ)π∗

(
T2 · T ′3

)
(αxτ) = 1G, where T3 =

∏•
i∈[1,|T3|] gi is an ordered

sequence and T ′3 =
∏•
i∈[1,|T3|/2](g2i−1g2i) ∈ F

(
〈α〉
)
. Then T1 and T2 · T ′3 are

both product-one free sequences and

|T1 · T2 · T ′3| =
(

3n− |SG0
|
)

+
|SG0 | − 2

2
≥ 2n− 2 .

If |T1 ·T2 ·T ′3| ≥ 2n, then we infer that there exists a product-one subsequence
Z of S such that S ·Z [−1] is again a product-one sequence (this follows by the
same line of the proof as used in SUBCASE 2.2 of Theorem 4.2), contradicting
that S ∈ A(G).

Suppose that |T1 · T2 · T ′3| = 2n− 1. Then |T ′3| = n− 1 and |T2| ≥ n
2 . Since

T2 · T ′3 is a product-one free sequence with |T2 · T ′3| ≥ 3n
2 − 1 ≥ 2n+1

2 , it follows
by Lemma 2.2 that T2 · T ′3 is g-smooth for some g ∈ 〈α〉 with ord(g) = 2n, and
for every z ∈ Π(T2 · T ′3), there exists a subsequence W |T2 · T ′3 with g |W such
that π∗(W ) = z. Since |T ′3| = n− 1, Lemma 2.2.3 implies that g |T ′3.

If Π(T1)∩Π(T2 ·T ′3) 6= ∅, then there exist subsequences W1 |T1, W2 |T2, and
W ′3 |T ′3 such that W ′3 is a non-trivial sequence (as argued in similar cases) and
π∗(W1) = π∗(W2·W ′3). Let W3 denote the corresponding subsequence of T3 and
assume that W3 = (αy1τ) ·(αy2τ) ·W ′′3 . Then Z = W2 ·(αy1τ) ·W1 ·(αy2τ) ·W ′′3
and S · Z [−1] are both product-one sequences, contradicting that S ∈ A(G).
Hence Π(T1)∩Π(T2·T ′3) = ∅, and it follows that T−11 ·T2·T ′3 is a product-one free
sequence of length 2n− 1. By Lemma 2.2.1, there exists an odd j ∈ [1, 2n− 1]
such that

T−11 · T2 · T ′3 =
(
αj
)[2n−1]

,

and we may assume by changing generating set if necessary that j = 1 so that
x ≡ 1 + n (mod 2n). Note that 2n− 2− 2|T1| ≥ 0 is even. If |T1| ≥ 1, then(

α · α−1
)[|T1|]

and α[1+
2n−2−2|T1|

2 ] · τ · α[
2n−2−2|T1|

2 ] · (αxτ)

are both product-one sequences, contradicting that S ∈ A(G). Thus |T1| = 0,

and we obtain that T3 =
(
αr+1τ · αr+nτ

)[n−1]
for some r ∈ [0, 2n − 1] (as

argued in similar cases). Since x ≡ 1 + n (mod 2n), we obtain that S =
(α · τ · αxτ) · (α · αr+nτ · αr+1τ)[n−1], contradicting that S ∈ A(G).

Suppose that |T1 · T2 · T ′3| = 2n− 2. Then |T ′3| = n and |T2| ≥ n
2 − 1. Since

T2 · T ′3 is a product-one free sequence with |T2 · T ′3| ≥ 3n
2 − 1 ≥ 2n+1

2 , it follows
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by Lemma 2.2 that T2 · T ′3 is g-smooth for some g ∈ 〈α〉 with ord(g) = 2n, and
for every z ∈ Π(T2 · T ′3), there exists a subsequence W |T2 · T ′3 with g |W such
that π∗(W ) = z. Since |T ′3| ≥ n− 1, Lemma 2.2.3 implies that g |T ′3.

If Π(T1)∩Π(T2 ·T ′3) 6= ∅, then there exist subsequences W1 |T1, W2 |T2, and
W ′3 |T ′3 such that W ′3 is a non-trivial sequence (as argued in similar cases) and
π∗(W1) = π∗(W2·W ′3). Let W3 denote the corresponding subsequence of T3 and
assume that W3 = (αy1τ) ·(αy2τ) ·W ′′3 . Then Z = W2 ·(αy1τ) ·W1 ·(αy2τ) ·W ′′3
and S · Z [−1] are both product-one sequences, contradicting that S ∈ A(G).
Hence Π(T1)∩Π(T2·T ′3) = ∅, and it follows that T−11 ·T2·T ′3 is a product-one free
sequence of length 2n− 2. By Lemma 2.2.2, there exists an odd j ∈ [1, 2n− 1]
such that either

T−11 · T2 · T ′3 =
(
αj
)[2n−3] · α2j or T−11 · T2 · T ′3 =

(
αj
)[2n−2]

,

and we may assume by changing generating set if necessary that j = 1 so that
either

T−11 · T2 · T ′3 = α[2n−3] · α2 , whence x ≡ 1 + n (mod 2n) ,

or else

T−11 · T2 · T ′3 = α[2n−2] , whence x ≡ 2 + n (mod 2n) .

Suppose that T−11 ·T2 ·T ′3 = α[2n−3] ·α2 and x ≡ 1+n (mod 2n). If |T1| ≥ 1
and α−2 ∈ supp(T1), then(
α−2 · α · α

)
·
(
α · α−1

)[|T1|−1]
and α[1+

2n−4−2|T1|
2 ] · τ · α[

2n−4−2|T1|
2 ] · αxτ

are both product-one sequences, contradicting that S ∈ A(G). If |T1| ≥ 1 and
α−2 /∈ supp(T1), then(

α · α−1
)[|T1|]

and α2 · α[
2n−4−2|T1|

2 ] · τ · α[1+
2n−4−2|T1|

2 ] · αxτ

are both product-one sequences, contradicting that S ∈ A(G). Thus we obtain
that |T1| = 0.

If α2 ∈ supp(T2), then T3 =
(
αr+1τ · αr+nτ

)[n]
for some r ∈ [0, 2n − 1] (as

argued in similar cases). Since x ≡ 1 + n (mod 2n), we obtain that

S1 = αr+1τ ·αr+nτ ·αxτ ·α2·τ, S2 =
(
αr+1τ ·αr+nτ

)[2]
, S3 = αr+nτ ·αr+1τ ·α

are all product-one sequences, whence S = S1·S2·S[n−3]
3 , contradicting that S ∈

A(G). If α2 ∈ supp(T ′3), then T3 =
(
αr1+1τ · αr1+nτ

)[n−1] · (αr2+2τ · αr2+nτ
)

for some r1, r2 ∈ [0, 2n − 1] (as argued in similar cases). Since x ≡ 1 + n
(mod 2n), we obtain that

S1 = αr2+nτ ·αr2+2τ ·αr1+1τ ·αr1+nτ ·αxτ ·τ and S2 = αr1+nτ ·αr1+1τ ·α

are both product-one sequences, whence S = S1 · S[n−2]
2 , contradicting that

S ∈ A(G).
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Suppose that T−11 · T2 · T ′3 = α[2n−2] and x ≡ 2 + n (mod 2n). If |T1| ≥ 1,
then (

α · α−1
)[|T1|]

and α[2+
2n−4−2|T1|

2 ] · τ · α[
2n−4−2|T1|

2 ] · αxτ
are both product-one sequences, contradicting that S ∈ A(G). Thus |T1| = 0,

and we obtain that T3 =
(
αr+1τ ·αr+nτ

)[n]
for some r ∈ [0, 2n− 1] (as argued

in similar cases). Since x ≡ 2 + n (mod 2n), we obtain that

S1 = τ · αxτ ·
(
αr+1τ · αr+nτ

)[2]
and S2 = αr+nτ · αr+1τ · α

are both product-one sequences, whence S = S1 · S[n−2]
2 , contradicting that

S ∈ A(G). �

5. Unions of sets of lengths

In this section, we study sets of lengths and their unions in the monoid B(G)
of product-one sequences over dihedral and dicyclic groups. To do so, we briefly
gather the required concepts in the setting of atomic monoids.

Let H be an atomic monoid, this means a commutative, cancellative semi-
group with unit element such that every non-unit element can be written as a
finite product of atoms. If a = u1 · . . . · uk ∈ H, where k ∈ N and u1, . . . , uk
are atoms of H, then k is called the length of the factorization and

L(a) = {k ∈ N | a has a factorization of length k} ⊂ N
is the set of lengths of a. As usual we set L(a) = {0} if a is invertible, and then

L(H) = {L(a) | a ∈ H}
denotes the system of sets of lengths of H. If k ∈ N and H is not a group, then

Uk(H) =
⋃

k∈L,L∈L(H)

L ⊂ N

denotes the union of sets of lengths containing k. For every k ∈ N, ρk(H) =
supUk(H) is the kth-elasticity of H, and we denote by λk(H) = inf Uk(H).
Moreover,

ρ(H) = sup

{
ρk(H)

k
| k ∈ N

}
= lim

k→∞

ρk(H)

k

is the elasticity of H. Unions of sets of lengths have been studied in settings
ranging from power monoids to Mori domains and to local quaternion orders
(for a sample of recent results we refer to [1, 11,12,19,32]).

Let G be a finite group. The monoid B(G) of product-one sequences over
G is a finitely generated reduced monoid, and it is a Krull monoid if and only
if G is abelian ([27, Proposition 3.4]). If G is abelian, then most features
of the arithmetic of a general Krull monoid having class group G and prime
divisors in all classes can be studied in the monoid B(G). For this reason,
B(G) has received extensive investigations (see [31] for a survey). If G is non-
abelian, then B(G) fails to be Krull but it is still a C-monoid ([8, Theorem
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3.2]). Thus it shares all arithmetical finiteness properties valid for abstract
C-monoids ([18, 20]). Investigations aiming at precise results for arithmetical
invariants were started in [27,28]. We continue them in this section and obtain
explicit upper and lower bounds in the case of dihedral and dicyclic groups. As
usual, we set

L(G) = L
(
B(G)

)
, Uk(G) = Uk

(
B(G)

)
, ρk(G) = ρk

(
B(G)

)
, ρ(G) = ρ

(
B(G)

)
for every k ∈ N . It is well-known that Uk(G) = {k} for all k ∈ N if and
only if |G| ≤ 2. Thus, whenever convenient, we will assume that |G| ≥ 3. It
is already known that the sets Uk(G) are intervals ([27, Theorem 5.5.1]). Our
study of the minima λk(G) runs along the lines of what was done in the abelian
case ([16, Section 3.1]). The study of the maxima ρk(G) substantially uses the
results of Section 4.

Lemma 5.1. Let G be a finite group with |G| ≥ 3 and let k ∈ N.

1. ρk(G) ≤ kD(G)
2 and ρ2k(G) = kD(G). In particular, ρ(G) = D(G)

2 .
2. If j, l ∈ N0 such that lD(G) + j ≥ 1, then

2l +
2j

D(G)
≤ λlD(G)+j(G) ≤ 2l + j .

In particular, λlD(G)(G) = 2l for every l ∈ N.

Proof. 1. [27, Proposition 5.6].
2. Let j, l ∈ N0 such that lD(G) + j ≥ 1. Note that there is some L ∈ L(G)

with k, λk(G) ∈ L, and it follows that

k ≤ maxL ≤ ρ(G) minL = ρ(G)λk(G) .

Hence we obtain that

2l +
2j

D(G)
= ρ(G)−1(lD(G) + j) ≤ λlD(G)+j .

Since 2 ≤ D(G), it follows by 1. that

λ2l+j(G) ≤ 2l + j ≤ lD(G) + j ≤ ρ2l(G) + ρj(G) ≤ ρ2l+j(G) ,

whence lD(G) + j ∈ U2l+j(G) (by [27, Theorem 5.5.1]), equivalently 2l + j ∈
UlD(G)+j(G). Therefore

2l +
2j

D(G)
≤ λlD(G)+j ≤ 2l + j .

If j = 0, then λlD(G)(G) = 2l. �

Lemma 5.2. Let G be a finite group with |G| ≥ 3. For every j ∈ N≥2, the
following statements are equivalent :

(a) There exists some L ∈ L(G) with {2, j} ⊂ L.
(b) j ≤ D(G).
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Proof. (a) ⇒ (b) If L ∈ L(G) with {2, j} ⊂ L, then Lemma 5.1.1 implies that
j ≤ supL ≤ ρ2(G) = D(G).

(b) ⇒ (a) If j ≤ D(G), then there exists some U ∈ A(G) with |U | = ` ≥ j,
say U = g1 · . . . · g` with g1g2 · · · g` = 1G. Then V = g1 · . . . · gj−1 · (gj · · · g`) ∈
A(G), and {2, j} ⊂ L

(
V · V −1

)
. �

Proposition 5.3. Let G be a finite group with |G| ≥ 3. For every l ∈ N0, we
have

λlD(G)+j(G) =

 2l for j = 0,
2l + 1 for j ∈ [1, ρ2l+1(G)− lD(G)],
2l + 2 for j ∈ [ρ2l+1(G)− lD(G) + 1,D(G)− 1],

provided that lD(G) + j ≥ 1.

Proof. Let l ∈ N0 and j ∈ [0,D(G) − 1] such that lD(G) + j ≥ 1. For j = 0,
the assertion follows from Lemma 5.1.2. Let j ∈ [1,D(G) − 1]. Then Lemma
5.1.2 implies that

2l +
2j

D(G)
=

lD(G) + j

ρ(G)
≤ λlD(G)+j(G) ≤ 2l + j .

For the j = 1 case, note that ρ2`+1(G) ≥ ρ2`(G) + 1 = `D(G) + 1, so j = 1
forces the second of the three cases to hold, and thus we may assume that
j ≥ 2. Then Lemma 5.2 implies that {2, j} ⊂ L(U) for some U ∈ B(G), whence
λj(G) = 2. Thus we have

λlD(G)+j(G) ≤ λlD(G)(G) + λj(G) = 2l + 2 ,

and hence λlD(G)+j(G) ∈ [2l + 1, 2l + 2].
If j ∈ [2, ρ2l+1(G) − lD(G)], then l ≥ 1, and by [27, Theorem 5.5.1], we

obtain that lD(G)+j ∈ U2l+1(G), equivalently 2l+1 ∈ UlD(G)+j(G). Therefore
λlD(G)+j(G) ≤ 2l + 1 and thus λlD(G)+j = 2l + 1.

If j > ρ2l+1(G) − lD(G), then lD(G) + j > ρ2l+1(G), and by [27, Theorem
5.5.1], we obtain that lD(G) + j /∈ U2l+1(G), and that λlD(G)+j(G) > 2l + 1.
Therefore λlD(G)+j(G) = 2l + 2. �

Theorem 5.4. Let G be a dihedral group of order 2n, where n ∈ N≥3 is odd.
Then, for every k ∈ N≥2 and every l ∈ N0, we have Uk(G) = [λk(G), ρk(G)],

ρk(G) = kn , and λ2ln+j(G) =


2l + j for j ∈ [0, 1],
2l + 2 for j ≥ 2 and l = 0,
2l + 1 for j ∈ [2, n] and l ≥ 1,
2l + 2 for j ∈ [n+ 1, 2n− 1] and l ≥ 1,

provided that 2ln+ j ≥ 1.

Proof. We obtain that Uk(G) = [λk(G), ρk(G)] by [27, Theorem 5.5.1]. We
prove the assertion on ρk(G), and then the assertion on λ2ln+j(G) follows from
Proposition 5.3.
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Let k ∈ N. If k is even, the assertion follows from Lemma 5.1.1. For odd k,
it is sufficient to show that ρ3(G) ≥ 3n. Indeed Lemma 5.1.1 implies that

3n+ 2kn ≤ ρ3(G) + ρ2k(G) ≤ ρ2k+3(G) ≤ (2k + 3)2n

2
= 3n+ 2kn ,

and hence the assertion follows.
Since n ∈ N≥3 is odd, it follows by letting G = 〈α, τ〉 that

U = (ατ)[n] · τ [n] , V = (α2τ)[n] · (ατ)[n] , and W = (α2τ)[n] · τ [n]

are the minimal product-one sequences of length D(G) (Theorem 4.1). Thus
we obtain that {3, 3n} ⊂ L(U · V ·W ), whence ρ3(G) ≥ 3n. �

Theorem 5.5. Let G be either a dihedral group D2n of order 2n or a dicyclic
group Q4m of order 4m, where n ∈ N≥4 is even and m ∈ N≥2. Then, for every
k ∈ N, we have

kD(G) + 2
(a)

≤ ρ2k+1(G)
(b)

≤ kD(G) +
D(G)

2
− 1 .

In particular, if G is isomorphic to D8 or to Q8, then ρ2k+1(G) = kD(G) + 2
for every k ∈ N.

Proof. 1. Let n ∈ N≥4 be even, and G = 〈α, τ |αn = τ2 = 1G and τα =
α−1τ〉. To show the inequality (a), we take three minimal product-one se-
quences

U = α[n+n
2−2]·τ ·αn

2 τ, V =
(
α−1

)[n+n
2−2]·ατ ·αn

2 +1τ, W = τ ·αn
2 τ ·ατ ·αn

2 +1τ

of length |U | = |V | = D(G) (Theorem 4.2) and |W | = 4. Then it follows by
{3,D(G) + 2} ⊂ L(U · V ·W ) that D(G) + 2 ≤ ρ3(G), whence we obtain that,
for every k ≥ 2,

kD(G) + 2 = (k − 1)D(G) +
(
D(G) + 2

)
≤ ρ2k−2(G) + ρ3(G) ≤ ρ2k+1(G) .

To show the inequality (b), we assume to the contrary that ρ2k+1(G) =⌊ (2k+1)D(G)
2

⌋
. Then there exist U1, . . . , U2k+1 ∈ A(G) with |U1| ≥ · · · ≥ |U2k+1|

such that ρ = ρ2k+1(G) ∈ L
(
U1 · . . . · U2k+1

)
. Hence we have that

U1 · . . . · U2k+1 = W1 · . . . ·Wρ ,

where W1, . . . ,Wρ ∈ A(G) with |W1| ≤ · · · ≤ |Wρ|. Let H0 = 〈α〉 \ {1G, α
n
2 }.

For every g ∈ H0 and every sequence S ∈ F(G), we define

ψg(S) = vg(S)− vg−1(S) .

Then, for every g ∈ H0, we have |ψg(T )| ≤ |T | and |ψg(W )| = 0 for sequences
T ∈ F(G) and W ∈ A(G) with |W | = 2.

CASE 1. |U1| = · · · = |U2k+1| = D(G).

Then we obtain that either |W1| = · · · = |Wρ| = 2, or else |W1| = · · · =
|Wρ−1| = 2 and |Wρ| = 3. Since 2k + 1 is odd, it follows by Theorem 4.2 that
there exists g0 ∈ H0 with ord(g0) = n such that the absolute value |ψg0(U1 ·
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. . . ·U2k+1)| is t( 3n
2 − 2) for some t ∈ N. Since ψg0(Wi) = 0 for all i ∈ [1, ρ− 1],

we obtain that

4 ≤
(3n

2
− 2
)
≤ |ψg0(U1 · . . . · U2k+1)|

= |ψg0(W1 · . . . ·Wρ)|
≤ |ψg0(W1 · . . . ·Wρ−1)|+ |ψg0(Wρ)| ≤ 3 ,

a contradiction.

CASE 2. |U1| = · · · = |U2k| = D(G) and |U2k+1| = D(G)− 1.

Then we obtain that |W1| = · · · = |Wρ| = 2 and hence

ψg(U1 · . . . · U2k) + ψg(U2k+1) = ψg(U1 · . . . · U2k+1) = ψg(W1 · . . . ·Wρ) = 0

for every g ∈ H0. Let U2k+1 = T1 ·T2, where T1 ∈ F
(
〈α〉
)

and T2 ∈ F
(
G\〈α〉

)
.

If |T1| = 0, then it follows by Proposition 3.2 that 3n
2 −1 = |U2k+1| = |T2| ≤ n,

contradicting that n ≥ 4. If |T2| = 0, then D
(
〈α〉
)

= n ensures that 3n
2 − 1 =

|U2k+1| = |T1| ≤ n, again a contradiction. Thus T1 and T2 are both non-
trivial sequences, and we show that they are product-one sequences to get a
contradiction.

First, we prove that T1 is a product-one sequence. Note that ψg(U2k+1) =
ψg(T1) for all g ∈ H0. If there exists g0 ∈ H0 such that ψg0(T1) 6= 0, then
|ψg0(U1 · . . . · U2k)| = |ψg0(T1)| ≥ 1. Thus Theorem 4.2 ensures that |ψg0(U1 ·
. . . · U2k)| = t( 3n

2 − 2) for some t ∈ N. Since |T2| ≥ 2, it follows that

3n

2
− 1 = |U2k+1| = |T2|+ |T1| ≥ 2 + |ψg0(T1)| = 2 + t

(3n

2
− 2
)
≥ 3n

2
,

a contradiction. Thus ψg(U2k+1) = ψg(T1) = 0 for all g ∈ H0. Since α
n
2 ∈

Z(G), we have v
α

n
2

(U) ≤ 1 for any U ∈ A(G) with |U | ≥ 3. Hence Theorem

4.2 ensures that α
n
2 /∈ supp(Ui) for all i ∈ [1, 2k], and hence v

α
n
2

(U1 · . . . ·
U2k+1) = v

α
n
2

(U2k+1) ≤ 1. Since v
α

n
2

(W1 · . . . ·Wρ) must be even, we obtain

v
α

n
2

(U2k+1) = 0, and therefore T1 =
∏•
i∈[1,|T1|/2](gi · g

−1
i ) ∈ B

(
H0

)
.

Next, we show that T2 is a product-one sequence. Let U1 · . . . ·U2k = Z1 ·Z2,
where Z1 ∈ F

(
〈α〉
)

and Z2 ∈ F
(
G \ 〈α〉

)
. Then Theorem 4.2 implies that

Z2 = V1 · . . . · V2k ,

where for each i ∈ [1, 2k], Vi = αriτ · αn
2 +riτ for some ri ∈ [0, n − 1]. Choose

I ⊂ [1, 2k] to be maximal such that
∏•
i∈I Vi is a product of minimal product-

one sequences of length 2. Then both |I| and |[1, 2k] \ I| are even, and thus
Z ′2 =

∏•
j∈[1,2k]\I Vj is a product-one sequence.

Since T1 · Z1 is a product of minimal product-one sequences of length 2,
it follows that T2 · Z2 is also a product of minimal product-one sequences of
length 2. Let T ′2 be a subsequence of T2 obtained by deleting all minimal
product-one subsequences of length 2. Then T ′2 · Z ′2 is again a product of
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minimal product-one sequences of length 2. Since T ′2 and Z ′2 are both square-
free sequences, we obtain that T ′2 = Z ′2 is a product-one sequence, whence
T2 =

(
T2 · (T ′2)[−1]

)
· T ′2 ∈ B(G).

2. Let m ≥ 2, and G = 〈α, τ |α2m = 1G, τ
2 = αm, and τα = α−1τ〉. To

show the inequality (a), we take three minimal product-one sequences

U = α[3m−2] · τ [2] , V = (α−1)[3m−2] · (ατ)[2] , W = (αmτ · αm+1τ)[2]

of length |U | = |V | = D(G) (Theorem 4.3) and |W | = 4. Then it follows by
{3,D(G) + 2} ⊂ L(U · V ·W ) that D(G) + 2 ≤ ρ3(G), whence we obtain that,
for every k ≥ 2,

kD(G) + 2 = (k − 1)D(G) +
(
D(G) + 2

)
≤ ρ2k−2(G) + ρ3(G) ≤ ρ2k+1(G) .

To show the inequality (b), we assume to the contrary that ρ2k+1(G) =⌊ (2k+1)D(G)
2

⌋
. Then there exist U1, . . . , U2k+1 ∈ A(G) with |U1| ≥ · · · ≥ |U2k+1|

such that ρ = ρ2k+1(G) ∈ L
(
U1 · . . . · U2k+1

)
. Hence we have that

U1 · . . . · U2k+1 = W1 · . . . ·Wρ ,

where W1, . . . ,Wρ ∈ A(G) with |W1| ≤ · · · ≤ |Wρ|. Let H0 = 〈α〉 \ {1G, αm}.
For every g ∈ H0 and every sequence S ∈ F(G), we define

ψg(S) = vg(S)− vg−1(S) .

Then, for every g ∈ H0, we have |ψg(T )| ≤ |T | and |ψg(W )| = 0 for sequences
T ∈ F(G) and W ∈ A(G) with |W | = 2.

CASE 1. |U1| = · · · = |U2k+1| = D(G).

Then we obtain that either |W1| = · · · = |Wρ| = 2, or else |W1| = · · · =
|Wρ−1| = 2 and |Wρ| = 3. Since 2k + 1 is odd, it follows by Theorem 4.3
that there exists g0 ∈ H0 with ord(g0) = 2m such that the absolute value
|ψg0(U1 · . . . · U2k+1)| is t(3m − 2) for some t ∈ N. Since ψg0(Wi) = 0 for all
i ∈ [1, ρ− 1], we obtain that

4 ≤ 3m− 2 ≤ |ψg0(U1 · . . . · U2k+1)|
= |ψg0(W1 · . . . ·Wρ)|
≤ |ψg0(W1 · . . . ·Wρ−1)|+ |ψg0(Wρ)| ≤ 3 ,

a contradiction.

CASE 2. |U1| = · · · = |U2k| = D(G) and |U2k+1| = D(G)− 1.

Then we obtain that |W1| = · · · = |Wρ| = 2, and hence

ψg(U1 · . . . · U2k) + ψg(U2k+1) = ψg(U1 · . . . · U2k+1) = ψg(W1 · . . . ·Wρ) = 0

for every g ∈ H0. Let U2k+1 = T1 ·T2, where T1 ∈ F
(
〈α〉
)

and T2 ∈ F
(
G\〈α〉

)
.

If |T2| = 0, then D
(
〈α〉
)

= 2m ensures that 3m − 1 = |U2k+1| = |T1| ≤ 2m, a
contradiction to m ≥ 2. Thus T2 is a non-trivial sequence. We show that T1
and T2 are both product-one sequences, and it will be shown that T2 /∈ A(G)
when |T1| = 0.
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First, we prove that T1 is a product-one sequence. Note that ψg(U2k+1) =
ψg(T1) for all g ∈ H0. If there exists g0 ∈ H0 such that ψg0(T1) 6= 0, then
|ψg0(U1 · . . . · U2k)| = |ψg0(T1)| ≥ 1. Thus Theorem 4.3 ensures that |ψg0(U1 ·
. . . · U2k)| = t(3m− 2) for some t ∈ N. Since |T2| ≥ 2, it follows that

3m− 1 = |U2k+1| = |T2|+ |T1| ≥ 2 + |ψg0(T1)| = 2 + t(3m− 2) ≥ 3m,

a contradiction. Thus ψg(U2k+1) = ψg(T1) = 0 for all g ∈ H0. Since αm ∈
Z(G), we have vαm(U) ≤ 1 for any U ∈ A(G) with |U | ≥ 3. Hence Theorem
4.3 ensures that αm /∈ supp(Ui) for all i ∈ [1, 2k], and thus vαm(U1 · . . . ·
U2k+1) = vαm(U2k+1) ≤ 1. Since vαm(W1 · . . . ·Wρ) must be even, we obtain

vαm(U2k+1) = 0, and therefore T1 =
∏•
i∈[1,|T1|/2](gi · g

−1
i ) ∈ B(H0).

Next, we show that T2 is a product-one sequence, which is not a minimal
product-one sequence when |T1| = 0. Let U1 · . . . · U2k = Z1 · Z2, where
Z1 ∈ F

(
〈α〉
)

and Z2 ∈ F
(
G \ 〈α〉

)
. Then Theorem 4.3 implies that

Z2 = V1 · . . . · V2k ,

where for each i ∈ [1, 2k], Vi = (αriτ)[2] for some ri ∈ [0, 2m − 1]. Choose
I ⊂ [1, 2k] to be maximal such that

∏•
i∈I Vi is a product of minimal product-

one sequences of length 2. Then both |I| and |[1, 2k] \ I| are even, and thus
Z ′2 =

∏•
j∈[1,2k]\I Vj is a product-one sequence, which is in fact a product of

product-one subsequences of length at most 4.
Since T1 · Z1 is a product of minimal product-one sequences of length 2, it

follows that T2 ·Z2 is also a product of minimal product-one sequences of length
2. Let T ′2 be a subsequence of T2 obtained by deleting all minimal product-
one subsequences of length 2. Then T ′2 · Z ′2 is again a product of minimal
product-one sequences of length 2. Since both T ′2 and Z ′2 have no product-one
subsequences of length 2 and αm ∈ Z(G), it follows that 1G ∈ π(Z ′2) = π(T ′2),
whence T2 =

(
T2 · (T ′2)[−1]

)
·T ′2 ∈ B(G). To conclude the proof, we may assume

that |T1| = 0. Then U2k+1 = T2, and it follows that either that T ′2 is trivial,
or that U2k+1 = T ′2. In the former case, U2k+1 is a product of product-one
subsequences of length 4 (as this is the case for Z ′2 with the terms of Z ′2 and
T ′2 pairing up), so U2k+1 ∈ A(G) forces 3m − 1 = |U2k+1| ≤ 4, contradicting
that m ≥ 2. In the latter case, U2k+1 is a product of product-one sequences of
length 2 by definition of T ′2, whence U2k+1 ∈ A(G) forces 3m−1 = |U2k+1| ≤ 2,
again a contradiction. �
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