Browse > Article
http://dx.doi.org/10.4134/JKMS.j190625

EXAMPLES OF SIMPLY REDUCIBLE GROUPS  

Luan, Yongzhi (Department of Mathematics The Hong Kong University of Science and Technology)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.5, 2020 , pp. 1187-1237 More about this Journal
Abstract
Simply reducible groups are important in physics and chemistry, which contain some of the important groups in condensed matter physics and crystal symmetry. By studying the group structures and irreducible representations, we find some new examples of simply reducible groups, namely, dihedral groups, some point groups, some dicyclic groups, generalized quaternion groups, Heisenberg groups over prime field of characteristic 2, some Clifford groups, and some Coxeter groups. We give the precise decompositions of product of irreducible characters of dihedral groups, Heisenberg groups, and some Coxeter groups, giving the Clebsch-Gordan coefficients for these groups. To verify some of our results, we use the computer algebra systems GAP and SAGE to construct and get the character tables of some examples.
Keywords
Simply reducible group; ambivalence; multiplicity-free; Kronecker multiplicity; Clebsch-Gordan coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wikipedia contributors, Molecular symmetry - Wikipedia, the free encyclopedia, https://en.wikipedia.org/w/index.php?title=Molecular_symmetry&oldid=962044761, 2020, [Online; accessed 13-June-2020].
2 H. S. Wilf, Lectures on integer partitions, 2000, PIMS Distinguished Chair Lecture Notes, available in http://www.mathtube.org/lecture/notes/lectures-integerpartitions.
3 P. Woit, Quantum mechanics for mathematicians: The Heisenberg group and theSchrodinger representation, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.4136&rep=rep1&type=pdf, 2012, [Online; accessed 25-August-2019].
4 Wolfram Research, Wolfram Mathematica, License purchased by the university, Version11.3.
5 ahulpke, Use GAP to define finite Clifford group, Mathematics Stack Exchange, URL: https://math.stackexchange.com/q/3213387 (version: 2019-05-04), ahulpke's homepage in Mathematics Stack Exchange: https://math.stackexchange.com/users/159739/ahulpke
6 G. E. Andrews, The Theory of Partitions, reprint of the 1976 original, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
7 M. Artin, Algebra, second edition, Pearson Education, Inc., 2011, English reprint edition published by PEARSON EDUCATION ASIA LTD. and CHINA MACHINE PRESS.
8 M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys. 25 (1984), no. 11, 3171-3182. https://doi.org/10.1063/1.526087   DOI
9 M. Aschbacher, R. Lyons, S. D. Smith, and R. Solomon, The classification of finite simple groups, Mathematical Surveys and Monographs, 172, American Mathematical Society, Providence, RI, 2011. https://doi.org/10.1090/surv/172
10 R. Ayoub, An Introduction to the Analytic Theory of Numbers, Mathematical Surveys, No. 10, American Mathematical Society, Providence, RI, 1963.
11 J. L. Berggren, Finite groups in which every element is conjugate to its inverse, Pacific J. Math. 28 (1969), 289-293. http://projecteuclid.org/euclid.pjm/1102983447   DOI
12 Y. G. Berkovich, L. S. Kazarin, and E. M. Zhmud', Characters of finite groups. Vol. 2, second edition, De Gruyter Expositions in Mathematics, vol. 64, De Gruyter, Berlin, 2019.
13 H. Bottomley, The number of partitions of n, https://oeis.org/A000041, 2001, The On-Line Encyclopedia of Integer Sequences (OEIS), A000041 , [Online; accessed 16-February-2020].
14 N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, translated from the 1968 French original by Andrew Pressley, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
15 I. Armeanu, About the Schur index for ambivalent groups, Comm. Algebra 42 (2014), no. 2, 540-544. https://doi.org/10.1080/00927872.2012.717436   DOI
16 R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59.
17 R. W. Carter, Finite groups of Lie type, John Wiley & Sons, Ltd., 1985.
18 J.-Q. Chen, J. Ping, and F. Wang, Group representation theory for physicists, second edition, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. https://doi.org/10.1142/5019
19 T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Harmonic analysis on finite groups, Cambridge Studies in Advanced Mathematics, 108, Cambridge University Press, Cambridge, 2008. https://doi.org/10.1017/CBO9780511619823
20 T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Mackey's theory of ${\tau}$-conjugate representations for finite groups, Jpn. J. Math. 10 (2015), no. 1, 43-96. https://doi.org/10.1007/s11537-014-1390-8   DOI
21 L. Christine Kinsey and T. E. Moore, Symmetry, shape, and space. An introduction to mathematics through geometry, Key College Publishing, 2002.
22 H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, third edition, Springer-Verlag, New York, 1972.
23 H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, fourth edition, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14, Springer-Verlag, Berlin-New York, 1980.
24 L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971.
25 M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group theory, Springer-Verlag, Berlin, 2008.
26 D. Faddeev and I. Sominski, Problems in higher algebra, Mir Publishers, Moscow, 1972, Translated from the Russian by George Yankovsky, Revised from the 1968 Russian edition.
27 H. G. Feichtinger, W. Kozek, and F. Luef, Gabor analysis over finite abelian groups, Appl. Comput. Harmon. Anal. 26 (2009), no. 2, 230-248. https://doi.org/10.1016/j.acha.2008.04.006   DOI
28 GAP Centres, GAP - Groups, Algorithms, Programming, https://www.gap-system.org, Version GAP 4.10.1 released on 23 February 2019.
29 J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl. (4) 32 (1951), 83-119. https://doi.org/10.1007/BF02417955   DOI
30 J. S. Frame, The characters of the Weyl group $E_8$, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pp. 111-130, Pergamon, Oxford, 1970.
31 M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000.
32 A. Gelessus, Character tables for chemically important point groups, http://symmetry.jacobs-university.de/, 2019, [Online; accessed 16-August-2019].
33 A. Gelessus, W. Thiel, and W. Weber, Multipoles and symmetry, J. Chemical Education 72 (1995), no. 6, 505-508.   DOI
34 J. B. Geloun and S. Ramgoolam, Tensor models, Kronecker coefficients and permutation centralizer algebras, J. High Energ. Phys. 92 (2017). https://doi.org/10.1007/jhep11(2017)092
35 S. Givant and P. Halmos, Introduction to Boolean algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-68436-9
36 J. Goss, Molecular examples for point groups, https://www.staff.ncl.ac.uk/j.p.goss/symmetry/Molecules_pov.html, 2019, [Online; accessed 16-August-2019].
37 D. Gross, Finite phase space methods in quantum information, https://www.qc.uni-freiburg.de/files/diplom.pdf, 2005, Diploma thesis, Universitat Potsdam, [Online; accessed 25-August-2019].
38 M. Hamermesh, Group theory and its application to physical problems, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1962.
39 L. C. Grove, The characters of the hecatonicosahedroidal group, J. Reine Angew. Math. 265 (1974), 160-169. https://doi.org/10.1515/crll.1974.265.160
40 B. C. Hall, Quantum theory for mathematicians, Graduate Texts in Mathematics, 267, Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-7116-5
41 S. D. Howard, A. R. Calderbank, and W. Moran, The finite Heisenberg-Weyl groups in radar and communications, EURASIP J. Appl. Signal Process. 2006 (2006), Art. ID 85685, 12 pp. https://doi.org/10.1155/asp/2006/85685
42 J.-S. Huang, Lectures on representation theory, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. https://doi.org/10.1142/9789812815743
43 J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511623646
44 T. Inui, Y. Tanabe, and Y. Onodera, Group theory and its applications in physics, Springer Series in Solid-State Sciences, 78, Springer-Verlag, Berlin, 1990, Translated and revised from the 1980 Japanese edition by the authors. Softcover reprint of the hardcover 1st edition 1990.
45 I. M. Isaacs, Algebra, Brooks/Cole Publishing Co., Pacific Grove, CA, 1994.
46 G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1985. First published by Addison-Wesley in 1981; digitally printed version 2009.
47 G. James and M. Liebeck, Representations and characters of groups, second edition, Cambridge University Press, New York, 2001. https://doi.org/10.1017/CBO9780511814532
48 D. L. Johnson, Presentations of groups, second edition, London Mathematical Society Student Texts, 15, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9781139168410
49 R. Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 5, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-3542-0
50 D. L. Johnson and E. F. Robertson, Finite groups of deficiency zero, in Homological group theory (Proc. Sympos., Durham, 1977), 275-289, London Math. Soc. Lecture Note Ser., 36, Cambridge University Press, Cambridge, 1979.
51 L. S. Kazarin and E. I. Chankov, Finite simply reducible groups are solvable, Sb. Math. 201 (2010), no. 5-6, 655-668; translated from Mat. Sb. 201 (2010), no. 5, 27-40. https://doi.org/10.1070/SM2010v201n05ABEH004087   DOI
52 L. S. Kazarin and V. V. Yanishevskii, On finite simply reducible groups, St. Petersburg Math. J. 19 (2008), no. 6, 931-951; translated from Algebra i Analiz 19 (2007), no. 6, 86-116. https://doi.org/10.1090/S1061-0022-08-01028-5   DOI
53 E. I. Khukhro and V. D. Mazurov, Unsolved problems in group theory, The Kourovka Notebook, arXiv e-prints (2014), arXiv:1401.0300, Submitted on 1 Jan 2014 (v1), last revised 26 Mar 2019 (v16).
54 M. Koca, R. Koc, M. Al-Barwani, and S. Al-Farsi, Maximal subgroups of the Coxeter group W($H_4$) and quaternions, Linear Algebra Appl. 412 (2006), no. 2-3, 441-452. https://doi.org/10.1016/j.laa.2005.07.018   DOI
55 M. Ladd, Symmetry of crystals and molecules, Oxford University Press, Oxford, 2014. https://doi.org/10.1093/acprof:oso/9780199670888.001.0001
56 H. B. Lawson, Jr., and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989.
57 G. W. Mackey, Multiplicity free representations of finite groups, Pacific J. Math. 8 (1958), 503-510. http://projecteuclid.org/euclid.pjm/1103039895   DOI
58 G. A. Miller, Second note on the groups generated by operators transforming each other into their inverses [A correction], Quart. J. 44 (1913), 142-146, contained in The collected works of George Abram Miller, Volume III, https://hdl.handle.net/2027/mdp.39015040409990.
59 G. E. Martin, Transformation geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1982.
60 G. A. Miller, Note on the groups generated by operators transforming each other into their inverses, Quart. J. 40 (1909), 366-367, contained in The collected works of George Abram Miller, Volume III, https://hdl.handle.net/2027/mdp.39015040409990.
61 M. Misaghian, The representations of the Heisenberg group over a finite field, Armen. J. Math. 3 (2010), no. 4, 162-173.
62 U. Muller, Symmetry relationships between crystal structures: applications of crystallo-graphic group theory in crystal chemistry, International Union of Crystallography Texts on Crystallography, 18, Oxford University Press, Oxford, 2013
63 D. Mumford, Tata lectures on theta. III, reprint of the 1991 original, Modern BirkhauserClassics, Birkhauser Boston, Inc., Boston, MA, 2007. https://doi.org/10.1007/978-0-8176-4578-6
64 I. Pak, G. Panova, and D. Yeliussizov, Bounds on the largest Kronecker and inducedmultiplicities of finite groups, Comm. Algebra 47 (2019), no. 8, 3264–3279. https://doi.org/10.1080/00927872.2018.1555837   DOI
65 J. Patera and R. Twarock, Affine extension of noncrystallographic Coxeter groups andquasicrystals, J. Phys. A 35 (2002), no. 7, 1551–1574. https://doi.org/10.1088/0305-4470/35/7/306   DOI
66 E. W. Read, Projective characters of the Weyl group of type $F_4$, J. London Math. Soc.(2) 8 (1974), 83-93. https://doi.org/10.1112/jlms/s2-8.1.83   DOI
67 H. E. Rose, A course on finite groups, Universitext, Springer-Verlag London, Ltd.,London, 2009. https://doi.org/10.1007/978-1-84882-889-6
68 M. S. Richman, T. W. Parks, and R. G. Shenoy, Discrete-time, discrete-frequency, time-frequency analysis, IEEE Transactions on Signal Processing 46 (1998), no. 6, 1517-1527   DOI
69 H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly 62 (1955), 26-29.https://doi.org/10.2307/2308012
70 S. Roman, Fundamentals of group theory, Birkhauser/Springer, New York, 2012. https://doi.org/10.1007/978-0-8176-8301-6
71 J. J. Rotman, An introduction to the theory of groups, fourth edition, Graduate Texts inMathematics, 148, Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-4176-8
72 B. E. Sagan, The symmetric group, second edition, Graduate Texts in Mathematics,203, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-6804-6
73 SageMath licensed under the GPL, SageMath, http://www.sagemath.org/index.html,Version SageMath 8.7 released on 23 March 2019.
74 D. E. Sands, Introduction to crystallography, Dover Publications, Inc., New York, 1993,this Dover edition, first published in 1993, is an unabridged republication of the work firstpublished by W. A. Benjamin, Inc. (in the "Physical Chemistry Monograph Series"ofthe "Advanced Book Program"), 1969 (corrected printing 1975).
75 F. Sasaki, M. Sekiya, T. Noro, K. Ohtsuki, and Y. Osanai, Non-relativistic configuration interaction calculations for many-electron atoms: Atomci, Modern Techniquesin Computational Chemistry: MOTECC-91 (E. Clementi, ed.), Springer Netherlands,1991
76 T. Tokuyama, On the decomposition rules of tensor products of the representations ofthe classical Weyl groups, J. Algebra 88 (1984), no. 2, 380-394. https://doi.org/10.1016/0021-8693(84)90072-3   DOI
77 E. M. Schmidt, Number of conjugacy classes in Weyl group of type $D_n$, https://oeis.org/A234254, 2013, The On-Line Encyclopedia of Integer Sequences (OEIS), A234254,[Online; accessed 16-February-2020]
78 J.-P. Serre, Finite groups: an introduction, Surveys of Modern Mathematics, vol. 10,International Press, Somerville, MA; Higher Education Press, Beijing, 2016, With assistance in translation provided by Garving K. Luli and Pin Yu.
79 B. Simon, Representations of finite and compact groups, Graduate Studies in Mathematics, 10, American Mathematical Society, Providence, RI, 1996.
80 R. Tao, Group theory in physics, Chinese ed., Higher Education Press, 2011.
81 J. Tolar, A classification of finite quantum kinematics, J. Physics: Conference Series538 (2014), 012020.
82 A. J. van Zanten and E. de Vries, Criteria for groups with representations of the secondkind and for simple phase groups, Canadian J. Math. 27 (1975), no. 3, 528-544. https://doi.org/10.4153/CJM-1975-064-4   DOI
83 E. P. Wigner, On representations of certain finite groups, Amer. J. Math. 63 (1941),57-63. https://doi.org/10.2307/2371276   DOI
84 Wikipedia contributors, Stone-von Neumann theorem - Wikipedia, the free encyclopedia, https://en.wikipedia.org/w/index.php?title=Stone-von_Neumann_theorem&oldid=932501700, 2019, [Online; accessed 17-January-2020].