• Title/Summary/Keyword: diblock copolymer

Search Result 75, Processing Time 0.025 seconds

Fabrication of Si Nano Dots by Using Diblock Copolymer Thin Film (블록 공중합체 박막을 이용한 실리콘 나노점의 형성)

  • Kang, Gil-Bum;Kim, Seong-Il;Kim, Young-Hwan;Park, Min-Chul;Kim, Yong-Tae;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.17-21
    • /
    • 2007
  • Dense and periodic arrays of holes and Si nano dots were fabricated on silicon substrate. The nanopatterned holes were approximately $15{\sim}40nm$ wide, 40 nm deep and $40{\sim}80\;nm$ apart. To obtain nano-size patterns, self?assembling diblock copolymer were used to produce layer of hexagonaly ordered parallel cylinders of polymethylmethacrylate (PMMA) in polystyrene(PS) matrix. The PMMA cylinders were degraded and removed with acetic acid rinse to produce a PS. $100\;{\AA}-thick$ Au thin film was deposited by using e-beam evaporator. PS template was removed by lift-off process. Arrays of Au nano dots were transferred by using Fluorine-based reactive ion etching(RE). Au nano dots were removed by sulfuric acid. Si nano dots size and height were $30{\sim}70\;nm$ and $10{\sim}20\;nm$ respectively.

  • PDF

Thermosensitive Sol-gel Phase Transition Behavior of Methoxy poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers (메톡시 폴리(에틸렌 글리콜)-폴리($\varepsilon$-카프로락톤) 공중합체의 온도감응성 솔-젤 전이 거동)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.344-351
    • /
    • 2004
  • Poly(ethylene glycol)-based diblock and triblock polyester copolymers stimulating to temperature were studied as injectable biomaterials in drug delivery system because of their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) (M$_{n}$=750 g/mole) and poly($\varepsilon$-caprolactone) (PCL) by ring opening polymerization of $\varepsilon$-CL with MPEG as an initiator in the presence of HCl . Et$_2$O. The aqueous solution of synthesized diblock copolymers represented sol phase at room temperature and a sol to gel phase transition as the temperature increased from room temperature to body temperature. To confirm the in vivo gel formation, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After 2 months, we observed the maintenance of gel without dispersion in mice. In this study, we synthesized diblock copolymers exhibiting sol-gel phase transition and confirmed the feasibility as biomaterials of injectable implantation.n.

Effect of shear on poly(styrene-b-isoprene) copolymer micelles

  • Bang, Joon-A;Lodge, Timothy P.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.227-232
    • /
    • 2007
  • The use of various shearing apparatuses to study the phase behavior of poly(styrene-b-isoprene) diblock copolymer micelles is described. A DMTA rheometer was modified so that one can apply oscillatory shear and obtain the scattering pattern along the shear gradient direction. A cone and plate shear cell was designed to access scattering along the shear vorticity direction, and both oscillatory and steady shear can be applied. The most popular way to employ steady shear on relatively low viscosity fluids is to use a Couette cell, because a high shear rate can be readily achieved without disturbing the sample by overflow. In this work, oscillatory shear was used to obtain a single crystal-like scattering pattern, and thereby to examine the mechanism of the thermotropic transition between face-centered cubic (fcc) and body-centered cubic (bcc) lattices. By applying the steady shear, the response of the fcc lattices to various shear rates is discussed.

Effect of Composition and Synthetic Route on the Microstructure of Biodegradable Diblock Copolymer, Poly($\varepsilon$-caprolactone-co-L-lactide)-b-Poly(ethylene glycol)

  • Min, Youn-Jin;Lee, Seong-Nam;Park, Jung-Ki;Cho, Kuk-Young;Sung, Shi-Joon
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.231-237
    • /
    • 2008
  • Biodegradable poly($\varepsilon$-caprolactone-co-L-lactide)-b-poly(ethylene glycol) (PCLA-b-PEG) copolymers were synthesized via solution polymerization by varying the feed composition of $\varepsilon$-caprolactone ($\varepsilon$-CL) and L-lactide (LLA) ($\varepsilon$-CL: LLA= 10:0, 7:3, 5:5, 3:7, 0: 10). The feed ratio based on weight is in accordance with the copolymer composition except for the case of $\varepsilon$-CL: LLA=3:7 (C3L7), which was verified by $^1H$-NMR. Two different approaches were used for the exceptional case, which is an extension of the reaction time or the sequential introduction of the monomer. A copolymer composition of $\varepsilon$-CL: LLA=3:7 could be obtained in either case. The chemical microstructure of PCLA-b-PEG was determined using the $^{13}C$-NMR spectra and the effect of the sequential structure on the thermal properties and crystallinity were examined. Despite the same composition ratio of the copolymer, the microstructure can differ according to the reaction conditions.

Poly(DL-Lactide-co-Glycolide) Nanoparticles Used PEG-PPG Diblock Copolymer by Surfactant: Preparation and Loading of Water Insoluble Drug (유화제로서 PEG-PPG 블록 공중합체를 이용한 Poly(DL-Lactide-co-Glycolide) 나노입자: 제조 및 지용성 약물의 로딩)

  • Taek Kyu Jung;Sung Soo Kim;Byung Cheol Shin
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.479-486
    • /
    • 2003
  • In this study, poly(DL-lactide-co-glycolide) nanoparticles loaded with water-insoluble vitamins such as vitamin A (Retinol) and vitamin E acetate were prepared by the emulsification diffusion method. Polymer solution was prepared by the two water-miscible organic solvent, such as ethanol and acetone. Because of its biocompatible property, polyethyleneglycol-polypropyleneglycol diblock copolymer was used as surfactant and stabilizer. The influence of some preparative variables on the nanoparticle formation and on the loading efficiency of active agents, such as the type and concentration of stabilizing agent, the stirring methods, the water/oil phase ratio and the polymer concentration were investigated in order to control and optimize the process. After preparation of nanoparticles loaded with active agent, particle size and distribution were evaluated by the light scattering particle analyzer. The loading efficiency of active agents was evaluated by the UV-visible spectroscopy. As the results, particle size were 50-200 nm and dispersibility was monodisperse. The optimum loading efficiency of active agents was observed 50-60%. It was found that the appropriate of selections of binary solvent mixtures and polymeric concentrations in both organic and aqueous phases could provide good yield and favorable physical properties of PLGA nanoparticles.

Preparation of Proton Conducting Crosslinked Membranes From PS-b-PHEA Diblock Copolymer and Poly(vinyl alcohol) (PS-b-PHEA 디블록 공중합체와 폴리비닐알콜을 이용한 수소이온 전도성 가교형 전해질막의 제조)

  • Kim, Jong-Hak;Seo, Jin-Ah;Roh, Dong-Kyu;Park, Jung-Tae;Koh, Joo-Hwan;Makea, Sanjeev
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.234-240
    • /
    • 2008
  • This work demonstrates the preparation of proton conducting crosslinked polymer electrolyte membranes by blending polystrene-b-poly(hydroxyethyl acrylate) (PS-b-PHEA) and poly(vinyl alcohol) (PVA) at 1 : 1 wt ratio. The PHEA block of the diblock copolymer was crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of membrane and -COOH of SA, as confirmed by FT-IR spectroscopy. Ion exchange capacity (IEC) continuously increased from 0.14 to 0.91 meq/g with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. In contrast, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.024 S/cm at 20.0 wt% of SA concentration. The maximum behavior of water uptake and proton conductivity is considered to be due to competitive effect between the increase of ionic sites and the crosslinking reaction according to the SA concentration.