Browse > Article

Effect of shear on poly(styrene-b-isoprene) copolymer micelles  

Bang, Joon-A (Department of Chemical and Biological Engineering, Korea University)
Lodge, Timothy P. (Department of Chemical Engineering & Materials Science, and Department of Chemistry, University of Minnesota)
Publication Information
Korea-Australia Rheology Journal / v.19, no.4, 2007 , pp. 227-232 More about this Journal
Abstract
The use of various shearing apparatuses to study the phase behavior of poly(styrene-b-isoprene) diblock copolymer micelles is described. A DMTA rheometer was modified so that one can apply oscillatory shear and obtain the scattering pattern along the shear gradient direction. A cone and plate shear cell was designed to access scattering along the shear vorticity direction, and both oscillatory and steady shear can be applied. The most popular way to employ steady shear on relatively low viscosity fluids is to use a Couette cell, because a high shear rate can be readily achieved without disturbing the sample by overflow. In this work, oscillatory shear was used to obtain a single crystal-like scattering pattern, and thereby to examine the mechanism of the thermotropic transition between face-centered cubic (fcc) and body-centered cubic (bcc) lattices. By applying the steady shear, the response of the fcc lattices to various shear rates is discussed.
Keywords
shear cell; oscillatory shear; steady shear; block copolymer micelles; face-centered cubic (fcc); body-centered cubic (bcc);
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Bang, J., T. P. Lodge, X. Wang, K. L. Brinker, and W. R. Burghardt, 2002, Thermoreversible, epitaxial fcc. to bcc. transitions in block copolymer solutions, Phys. Rev. Lett. 89, 215505/1-215505/4
2 Bassett, W. A. and E. Huang, 1987, Mechanism of the body-centered cubic-hexagonal close-packed phase transition in iron, Science 238, 780
3 Diat, O., G. Porte, and J.-F. Berret, 1996, Orientation and twins separation in a micellar cubic crystal under oscillating shear, Phys. Rev. B 54, 869
4 Hamley, I. W., J. A. Pople, J. P. A. Fairclough, A. J. Ryan, C. Booth, and Y. W. Yang, 1998c, Shear-induced orientational transitions in the body-centered cubic phase of a diblock copolymer gel, Macromolecules 31, 3906-3911   DOI   ScienceOn
5 Hamley, I. W., J. A. Pople, J. P. A. Fairclough, N. J. Terrill, A. J. Ryan, C. Booth, G.-E. Yu, O. Diat, K. Almdal, K. Mortensen, and M. Vigild, 1998d, Effect of shear on cibic phases in gels of a diblock copolymer, J. Chem. Phys. 108, 6929
6 Hanley, K. J., T. P. Lodge, and C.-I. Huang, 2000, Phase behavior of a block copolymer in solvents of varying selectivity, Macromolecules 33, 5918
7 McConnell, G. A., M. Y. Lin, and A. P. Gast, 1995, Long range order in polymeric micelles under steady shear, Macromolecules 28, 6754   DOI   ScienceOn
8 Wentzcovitch, R. M., 1994, hcp-to-bcc pressure-induced transition in Mg simulated by ab initio molecualr dynamics, Phys. Rev. B 50, 10358
9 Daniel, C., I. W. Hamley, M. Wilhelm, and W. Mingvanish, 2001, Non-linear rheology of a face-centered cubic phase in a diblock copolymer gel, Rheol. Acta 40, 39
10 Lodge, T. P., J. Bang, M. J. Park, and K. Char, 2004, Origin of the thermoreversible fcc-bcc transition in block copolymer solutions, Phys. Rev. Lett. 92, 145501
11 Olsen, G. H. and W. A. Jesser, 1971a, The effect of appolied stress on the f.c.c.-b.c.c. transformation in thin iron films, Acta Metall. 19, 1299
12 Wentzcovitch, R. M. and M. L. Cohen, 1988, Theoretical model for the hcp-bcc transition in Mg, Phys. Rev. B 37, 5571
13 Caputo, F. E., PhD thesis, Northwestern University, 2002
14 Hamley, I. W., J. A. Pople, C. Booth, L. Derici, M. Imperor-Clerc, and P. Davidson, 1998b, Shear-induced orientation of the body-centered-cubic phase in a diblock copolymer gel, Phys. Rev. E 58, 7620-7628   DOI   ScienceOn
15 Lodge, T. P., B. Pudil, and K. J. Hanley, 2002, The full phase behavior for block copolymers in solvents of varying selectivity, Macromolecules 33, 5918   DOI   ScienceOn
16 Hamley, I. W., K. Mortensen, G. E. Yu, and C. Booth, 1998a, Mesoscopic crystallography: a small-angle neutron scattering study of the body-centered cubic micellar structure formed in a block copolymer gel, Macromolecules 31, 6958-6963   DOI   ScienceOn
17 Bang, J. and T. P. Lodge, 2003, Mechanisms and epitaxial relationships between close-packed and bcc lattices in block copolymer solutions, J. Phys. Chem. B 107, 12071-12081   DOI   ScienceOn
18 Bang, J. and T. P. Lodge, 2004a, Long-Lived Metastable bcc Phase during Ordering of Micelles, Phys. Rev. Lett. 93, 245701/1-245701/4
19 Daniel, C., I. W. Hamley, W. Mingvanish, and C. Booth, 2000, Effect of shear on the face-centered cubic phase in a diblock copolymer gel, Macromolecules 33, 2163
20 Caputo, F. E., W. R. Burghardt, K. Krishnan, F. S. Bates, and T. P. Lodge, 2002, Time-resolved SAXS measurements of a polymer bicontinuous microemulsion structure factor under shear, Phys. Rev. E 66, 041401
21 Wentzcovitch, R. M. and H. Krakauer, 1990, Martensitic transformation of Ca, Phys. Rev. B 42, 4563   DOI   ScienceOn
22 Headley, T. J. and J. A. Brooks, 2002, A new bcc-fcc orientations relationship observed between ferrite and austenite in solidification structures of steels, Metall. Mater. Trans. A 33A, 5
23 Eiser, E., F. Molino, G. Porte, and X. Pithon, 2000b, Flow in micellar cubic crystals, Rheol. Acta 39, 201   DOI   ScienceOn
24 Loose, W. and B. J. Ackerson, 1994, Model calculations for the analysis of scattering data from layered structures, J. Chem. Phys. 101, 7211   DOI   ScienceOn
25 Shimizu, K. and Z. Nishiyama, 1972, Electron microscopic studies of martensitic transformations in iron alloys and steels, Metall. Trans. 3, 1055   DOI
26 Eiser, E., F. Molino, G. Porte, and O. Diat, 2000a, Nonhomogeneous textures and banded flow in a soft cubic phase under shear, Phys. Rev. B 61, 6759   DOI   ScienceOn
27 Gotoh, Y. and I. Aral, 1986, Calculation of interfacial energy of the fcc-bcc interface and its epitaxial orientation relationship, Jpn. J. Appl. Phys. 25, L583
28 Olsen, G. H. and W. A. Jesser, 1971b, The f.c.c.-b.c.c. transformation in iron deposits on copper, Acta Metall. 19, 1009
29 Wang, C.-Y. and T. P. Lodge, 2002, Kinetics and mechanisms for the cylinder-to-gyroid transition in a block copolymer solution, Macromolecules 35, 6997
30 Molino, F. R., J.-F. Berret, G. Porte, O. Diat, and P. Lindner, 1998, Identification of flow mechnisms for a soft crystal, Eur. Phys. J. B 3, 59
31 Bang, J., K. Viswanathan, T. P. Lodge, M. J. Park, and K. Char, 2004b, Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature, J. Chem. Phys. 121, 11489-11500   DOI   ScienceOn
32 Castelletto, V., I. W. Hamley, P. Holmqvist, C. Rekatas, C. Booth, and J. G. Grossmann, 2001, Small-angle X-ray scattering study of a poly oxyphenylethylene)-poly(oxyethylene) diblock copolymer gel under shear flow, Colloid Polym. Sci. 279, 621
33 Dahmen, U., 1982, Orientation relationships in precipitation systems, Acta Metall. 30, 63   DOI   ScienceOn
34 Wada, M., S. Uda, and M. Kato, 1989, The f.c.c. to b.c.c. transformation in Fe film on a spherical Cu substrate, Phil. Mag. A 59, 31   DOI