• Title/Summary/Keyword: diamond turning

Search Result 150, Processing Time 0.037 seconds

DOE 렌즈 개발 현황과 전망

  • 김영준
    • The Optical Journal
    • /
    • v.13 no.5 s.75
    • /
    • pp.20-22
    • /
    • 2001
  • 향후 초박형 렌즈에 있어서 플라스틱 DOE Lens가 주도적으로 사용될 전망이고, 광통신분야에서도 WDM(wavelenght Division Multiplexer)등에 응용 가능성이 높다. DOE Pattern의 회절광량 해석기술, DTM(Diamond Turning Machine)과 Laser가공기의 정밀도 향상 등으로 금형가공기술의 급속한 발전과 함께 DOE의 보편화는 조만간 이뤄질 것으로 보인다.

  • PDF

A study of metal aspheric reflector manufacturing in diamond turning machine (다이아몬드 터닝머신을 이용한 금속 비구면 초정밀 절삭특성)

  • Kim, G.H.;Do, C.J.;Hong, K.H.;Rui, B.J.;Won, J.H.;Kim, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.83-87
    • /
    • 2001
  • A 110 mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of $Ra={\lambda}/12({\lambda}=632nm)$ has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

A Study on Cutting Force Characteristics of Non-ferrous steel in Diamond Turning Process (다이아몬드 터닝 가공에서의 비철금속에 대한 미세절삭력 특성 연구)

  • 정상화;김상석;차경래;김현욱;나윤철;홍권희;김건희;김효식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.38-42
    • /
    • 2001
  • A complete quantitative understanding of DT has been difficult because the process represents such a broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. There are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

A Study on Cutting Force Characteristics in Diamond Turning Process (다이아몬드 터닝 가공공정에서의 미세절삭력 특성 연구)

  • 정상화;김상석;차경래;김건희;김근홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.957-960
    • /
    • 1997
  • A complete quantitative understanding of DT has been difficult because the process represents such s broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. Here are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF