• 제목/요약/키워드: diamond grinding wheel

검색결과 116건 처리시간 0.022초

연속 방전드레싱에 의한 경취재료의 경면연삭에 관한 연구 (A Study on the Mirror Surface Grinding for Brittle Materials with Inprocess E.D.M. Dressing)

  • 김정두;이은상
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.785-792
    • /
    • 1994
  • Ferrite is widely used in the material of magnetic head, but is difficult of grinding because of their brittleness and hardness. Therefore, diamond wheel with superabrasive is required for surface grinding of this brittle material. But the conventional dressing method can not apply to the diamond wheel with superabrasive. In this study describes a newly proposed method for carrying out effective inprocess dressing of diamond wheel with superabrasive. Using the IEDD the surface roughness of workpiece was improved and grinding force was very low. Resently IEDD is good method to obtain the efficiency grinding and surface grinding of brittle materials.

세라믹 연삭에서 결합제에 따른 다이아몬드 휠의 마멸 특성 (Wear Characteristics of Diamond Wheel according to bond in Ceramic Grinding)

  • 공재향;유봉환;소의열;이근상;유은이;임홍섭
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.75-81
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel during grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous finding of ceramics, cutting edge ratio of resinoid bond wheel decreased. For the case of vitrified bond wheel, cutting edge ratio did not change.

적층 다이아몬드 숫돌로 연삭된 초경합금의 표면거칠기 특성 (Surface Roughness Characteristics of Cemented Carbide Ground by Laminated Diamond Wheel)

  • 김강
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.47-53
    • /
    • 2003
  • It was already proven experimentally that the laminated grinding wheel is superior to the general grinding wheel in the productivity of grinding. However, it can't be guaranteed when the workpiece material is cemented carbide. Because of its extreme hardness, the grinding wheels made up of super-abrasives are used for grinding it. So, to investigate the performance in extremely hard materials grinding using super-abrasive grinding wheels, the surface roughness characteristics of cemented carbide ground by the laminated diamond wheels are studied experimentally. Through this study, it is found that the similar surface roughness characteristics, those were found in the studies on the laminated aluminum oxide wheels, are still available.

다이아몬드휠의 드레싱 조건에 관한 연구 (A Study on the Dressing Conditions of Diamond Wheel)

  • 하상백;정재극;이종찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1020-1024
    • /
    • 1997
  • Recently the use of ceramic materals has been greatly increased in the industries. But machining of the ceramics is quite unproductive because of their high stength,high hardness,and brittleness. The efficiency of the grinding operation of ceramics depends on the preparation of diamond grinding wheel, i.e.,truning and dressing. This paper describes some experimental results on the dressing conditions of diamond grinding wheel. The dressing performance is evaluated by the magnitude of normal grinding force. The better dressed wheels result in the lower normal grinding forces. The dressing performances of copper plate and aluminum oxide dressing stick are compared. The optimum dressing conditions including the grit size of dressing sticks, the depth of the dressing operation, and the dressing speed qre determined.

  • PDF

Sr 페라이트의 총형연삭특성 (Form grinding characteristics of Sr ferrite)

  • 김성청;이재우
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.21-27
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions in form grinding of Sr-ferrite with the electro-plated diamond wheel. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the best at the peripheral wheel speed of 1700 m/min. (2) In the case of the depth of cut larger than 0.4mm, crack layers is induced in the ground surface, and the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) Whe the depth of cut exceeds 0.6mm, the wheel life becomes extremely severe due to the large chipping and brack- age in the diamond grains. However, at the depth of cut .leq. 0.05mm, the diamond grain shows abrasive wear. (4) The decrease of flexural strength and the increase of surface roughness is in proportion to the increase of the feed rate. (5) Most effective nozzle setting angles with various delivery conditions of the grinding fluid, such as nozzle position .PHI. , flow rate Q, etc., were made clear.

  • PDF

마이크로 V홈 연삭가공을 위한 다이아몬드숫돌의 V형상 트루잉에 관한 연구 (A Study on the Truing of Diamond Wheel for Micro V-shaped Groove Grinding)

  • 이주상
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.27-33
    • /
    • 2005
  • This study deals with the truing of diamond wheel fur the manufacture of micro v-shaped grooves with fine sharp edges in the grinding. Fine micro v-shaped grooves are key components to fabricate LGP(light guide plate), optical fiber connector and so on. Conventional v-shaped groove methods such as etching and lithography are difficult to make grooves with accuracy and cutting by lathe is difficult to select target materials. Therefore, as a preliminary stage to developing the grinding technology that will be expected fabrications for micro 3-dimensional structure of high effectivity and accuracy and freed up the restrictions of machinability to the materials for micro v-shaped grooves, truing is carried out with resin bond diamond wheel and electroforming diamond wheel using a cup-type truer. From the experimental results, it is found that the effects according to working direction of the cup-type truer and the restrainable methods of plastic deformation that is generated at wheel edge are examined. As a result, fine micro v-shaped diamond wheel was obtained, which are applicable to micro grinding for optical devices.

가변 공기압력 초경면 연마기의 성능 특성에 관한 연구 (A Study on Performance Characteristics of Super-mirror Face Grinding Machine Using Variable Air Pressure)

  • 배명환;정화
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.9-16
    • /
    • 2013
  • The comparisons of performance characteristics between the super-mirror face grinding machine using variable air pressure developed in this laboratory to grind precisely the sliding face of a surface hardened workpiece with thermal spray and the conventional one are investigated by measuring the surface roughness and hardness for a SCM440. To process variously workpiece according to shape, size and materials, the rotating and contacting forces of the developed grinding machine can be changed by air pressure. The surface roughness of processed workpiece can be also attained to state of mirror face by grinding precisely the sliding face with changing the rotating speed of diamond wheel. It is possible to be attached to the various machine tools because the super-mirror face grinding machine using variable air pressure is a small size. The grinding efficiency is elevated because it can be worked by two or more grinding machines attached to concurrently a machine tool for the large workpiece. In this study, results show that the cusp height of the super-mirror face grinding machine for the particle size of 100 and $1500No./mm^2$ is lower than that of the conventional one because the vibration is reduced by rotating very fast the diamond wheel with a pressed air and it can be processed by rotating the diamond wheel with a constantly varied air pressure perpendicular to workpiece surface, and that the workpiece in the super-mirror face grinding machine for the particle size of $3000No./mm^2$ can be processed to state of mirror face that is rarely seen by the cusp height. It is also found that the surface hardness of both the conventional and the super-mirror face grinding machines are increased as the particle size of diamond wheel is reduced, and the surface hardness of the super-mirror face grinding machine is HRC 1.1 ~ 1.8 higher than that of the conventional one.

난삭재의 초정밀.고능률 연삭가공을 위한 다이아몬드숫돌의 개발 (Development of diamond wheel for ultra precision and high performance grinding of difficult-to-materials)

  • 허성중
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2172-2178
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted. Wheels, that are employed for ultra precision and high performance grinding of difficult-to materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond grains were bonded firmly by a melamine resin to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work surfaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are suggested, and the grinding characteristics of wheels are also illustrated.

Surface Grinding of Tungsten Carbide for High Quality Unign Diamond Wheel

  • Seoung-Jung Heo
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.12-24
    • /
    • 1995
  • Various surface grinding experiments using resin bonded diamond abrasive wheels are carried out for tungsten carbide materials in order to minimize the damage on the ground surface and to purse the precise dimension compared to conventional grinding machine. When grinding quality is constant, theoretical grinding effect is changed according to the speed of workpiece. Accordingly, grinding forces, which are Fn, Ft, were analyzed for the machining processes of tungsten-carbide material to obtain optimum grinding conditions. Brief investigation is carried out to decrease the dressing efficiency of resinoid bonded diamond grinding wheel to grind tungsten-carbide. Truing is also carried out to provide a desired shape on a wheel or to correct a dulled profile. High quality in dimensional accuracy and surface are often required as a structural components, therefore 3-points bending test is carried out to check machining damage on the ground surface layer, which in one of sintered brittle material. From this experimental study, some useful machining data and information to determine proper machining condition for grinding of tungsten-carbide materials are obtained.

  • PDF

세라믹 연삭에서 다이아몬드 숫돌 마멸에 관한 연구 (A Study on the Diamond Wheel Wear in Ceramic Grinding)

  • 공재향;유봉환;소의열;이근상;유은이
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.344-348
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness after using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous grinding of ceramics, cutting edge ratio of resinoid bond wheel decreases. For the case of vitrified bond wheel, cutting edge ratio does not change.

  • PDF