• Title/Summary/Keyword: diameter profile

Search Result 319, Processing Time 0.028 seconds

Characteristics of Abrasive Water Jet Milled Surface by Overlap Cutting (중첩가공에 의한 워터젯 밀링의 가공면 특성)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.118-123
    • /
    • 2016
  • Overlap cutting is a fundamental method of applying abrasive water jet (AWJ) machining to milling to produce a wider surface because the nozzle outlet is approximately 1.0 mm wide. In this study, the effects of overlap cutting on the depth profile and surface roughness are investigated. The overlapping area depends on the amount of step over, which is controlled in the pick-feed direction. If the step over is equal to or larger than the diameter of the nozzle, no overlap cut occurs but large cusps remain between the cut paths. A step over as small as one-thirds of the nozzle diameter may lead to triple-overlap cutting resulting in an extraordinary depth. By using pocket milling experiments with a step over of 0.46 (or 0.47), it is verified that AWJ can produce a milled surface of titanium, one of the hard-to-cut materials, with $76{\mu}m$ Ra.

A Study on the Pressure Loss in Helically Coiled Tubes (나선코일 튜브 내에서의 압력손실에 관한 연구)

  • Han, K.I.;Bark, J.U.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.155-165
    • /
    • 1998
  • The resistance coefficient and heat transfer performance are studied for the turbulent water flow in a smooth coiled tube having variable curvature ratios and a corrugated-coiled tube having a ratio of coil to tube diameter of 22. Experiments are carried out for the fully developed turbulent flow of water in tube coils on the uniform wall temperature condition. This work is limited to tube coils of R/a between 22 and 60 and Reynolds numbers from 13000 to 53000. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. A corrugated-coiled tube(R/a=60) shows more excellent performance than a smooth coiled tub (R/a=60) at a similar curvature ratio. The friction factor f is sensitive to changes in the velocity profile caused by a temperature gradient. Allowance was made for the pressure loss in the short inlet and outlet lengths and due to the presence of the thermocouple inlet and outlet as a result of separate experimental on a straight tube. It is to be expected that the allowance at the exit will be somewhat too low because of secondary flow effects carried over from the coil.

  • PDF

Development of Form Rolling Technology for High Precision Worm Using the Rack Dies of Counter Flow Type (Counter Flow 방식의 랙 다이를 이용한 고정 밀도 Worm 전조기술 개발)

  • Ko Dae-Cheol;Lee Jung-Min;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.57-64
    • /
    • 2004
  • The objective of this study is to suggest the form rolling technology to produce high precision worm on the base of three dimensional finite element simulation and experiment. It is important to determine the initial workpiece diameter in form rolling because it affects the quality of tooth profile. The calculation method of the initial workpiece diameter in form rolling is suggested and it is verified by finite element simulation. The form rolling processes of worm shaft used as automotive part using both the rack dies of counter flow type and the roll dies are considered and simulated with the same numerical model as actual process by the commercial finite element code, BEFORM-3D. Deformation modes of workpiece between the form rolling by the rack dies of counter flow type and the roll dies are investigated from the result of simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The surface roughness, the straightness and the profile of worm are measured precisely using the worm shafts obtained from experiment. The results of simulation and experiment in this study show that the form rolling process of worn shaft using the rack dies is decidedly superior to that using roll dies from the aspect of the precision of worm such as the surface roughness, the straightness and the profile of worm.

Optimization of the Anastomosis Angle and Diameter with the Systemic- To-Pulmonary Artery Shunt (대동맥-폐동맥 연결관의 접합각도와 직경의 최적화)

  • Kim, Sung-Min;Park, Sung-Yun;Jun, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.123-130
    • /
    • 2007
  • Hypoplastic left heart syndrome is currently the most lethal cardiac malformation of the newborn infant. Survival following a Norwood operation depends on the balance between systemic and pulmonary blood flow, which is highly dependent on the fluid dynamics through the interposition shunt between the two circulations. The purpose of this study is an optimization of the systemic-to-pulmonary artery shunt. In this study, We used computational fluid dynamic(CFD) models to determine the velocity profile in a systemic-to-pulmonary artery shunt and suggested a simplified method of calculating the blood flow in the shunt based on Ultrasound systems. We analyzed the flow characteristic variations and oscillatory shear index(OSI) due to the anastomosis angle and shunt diameter changing. Four different CFD models were constructed with the shunt sizes ranging from 3 to 3.5mm. The angle between the brachiocephalic trunk(BCT) and the shunt were $30^{\circ}$ and $45^{\circ}$, respectively. When the diameter is 3.0 mm, the oscillatory shear index decreased by 1.2% at $30^{\circ}$ as opposed to at $45^{\circ}$. When the diameter is 3.5 mm, it increased by 18% more at $30^{\circ}$ as opposed to at $45^{\circ}$. When the joint angle is $30^{\circ}$ and the diameter is 3.0 mm, the oscillatory shear index decreased by 4.1% in comparison with the 3.5 mm diameter. When the angle is $45^{\circ}$ and the diameter is 3.0 mm, the index increased by 14.6% in comparison with the 3.5 mm diameter.

A Study on the Particle Size and Velocity Profile on a Gasoline Port Injector Using a Phase Doppler Particle Analyzers (PDPA) (위상 도플러 입자 분석기(PDPA)를 이용한 가솔린 포트 인젝터의 입자 크기 및 속도 프로파일에 관한 연구)

  • KIM, HYOJIN;JO, HYUN;TONGCHAI, SAKDA;LIM, OCKTACKE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2017
  • This study is to investigate particle size and velocity profile of gasoline port injector using Phase Doppler Particle Analyzer (PDPA). In this experiment, a GV 250 Delphi port injector used for motorcycles was used for liquid injection. The injector consists of four holes and has a static flow rate of 2.13 g/s. The fuel used in the injection was N-heptane, which is similar to gasoline, as an alternative fuel. The test fuel was injected at an atmospheric temperature of $20^{\circ}C$ and an open atmosphere of 1 atm. The injection time was 10 ms and the injection pressure was 3.5 bar in PDPA experiment. The experimental target position was fiexd at 30, 50 and 75 mm from the nozzle tip and data were collected for a total of 10,000 samples. The experimental results show that the length diameter (D10), the Sauter mean diameter ($D_{32}$), and the mean droplet velocity (MDV) are $45-54{\mu}m$, $99-115{\mu}m$ and 15-21 m/s, respectively.

Simulation of the Structural Parameters of Anti-resonant Hollow-core Photonic Crystal Fibers

  • Li, Qing;Feng, Yujun;Sun, Yinhong;Chang, Zhe;Wang, Yanshan;Peng, Wanjing;Ma, Yi;Tang, Chun
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 2022
  • Anti-resonant hollow-core photonic crystal fiber (AR-HCF) has unique advantages, such as low nonlinearity and high damage threshold, which make it a promising candidate for high-power laser delivery at distances of tens of meters. However, due to the special structure, optical properties such as mode-field profile and bending loss of hollow-core fibers are different from those of solid-core fibers. These differences have limited the widespread use of AR-HCF in practice. In this paper we conduct numerical analysis of AR-HCFs with different structural parameters, to analyze their influences on an AR-HCF's optical properties. The simulation results show that with a 23-㎛ air-core diameter, the fundamental mode profile of an AR-HCF can well match that of the widely used Nufern's 20/400 fiber, for nearly-single-mode power delivery applications. Moreover, with the ratio of cladding capillary diameter to air-core diameter ranging from 0.6 to 0.7, the AR-HCF shows excellent optical characteristics, including low bending sensitivity while maintaining single-mode transmission at the same time. We believe these results lay the foundation for the application of AR-HCFs in the power delivery of high power fiber laser systems.

An Assessment of Air Sampling Location for Stack Monitoring in Nuclear Facility (원자력시설 굴뚝 내 공기시료채취 위치의 적절성 평가)

  • Lee, JungBok;Kim, TaeHyoung;Lee, JongIl;Kim, BongHwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • In this study, air sampling locations in the stack of the Advanced Fuel Science Building (AFSB) at the Korea Atomic Energy Research Institute (KAERI) were assessed according to the ANSI/HPS N13.1-1999 specification. The velocity profile, flow angle and $10{\mu}m$ aerosol particle profile at the cross-section as functions of stack height L and stack diameter D (L/D) were assessed according to the sampling location criteria using COMSOL. The criteria for the velocity profile were found to be met at 5 L/D or more for the height, and the criteria for the average flow angle were met at all locations through this assessment. The criteria for the particle profile were met at 5 L/D and 9 L/D. However, the particle profile at the cross-section of each sampling location was found to be non-uniform. In order to establish uniformity of the particle profile, a static mixer and a perimeter ring were modeled, after which the degrees of effectiveness of these components were compared. Modeling using the static mixer indicated that the sampling locations that met the criteria for the particle profile were 5-10 L/D. When modeling using the perimeter ring, the sampling locations that met the criteria for particle profile were 5 L/D and 7-10 L/D. The criteria for the velocity profile and the average flow angle were also met at the sampling locations that met the criteria for the particle profile. The methodologies used in this study can also be applied during assessments of air sampling locations when monitoring stacks at new nuclear facilities as well as existing nuclear facilities.

Experimental study of the surface-tension driven flow in a cylindrical liquid column (원통형 액적내의 표면장력 변화로 인한 흐름특성에 관한 실험적 연구)

  • 이진호;강희찬;이동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.4
    • /
    • pp.629-636
    • /
    • 1987
  • An experiment is carried out to study the surface-tension driven flow characteristics in a cylindrical liquid column heated from above (which is the low gravity floating zone simulated on earth) with varing the aspect ratio and diameter of the liquid column. Hexadecane, octadecane, silicon oil(10cs), FC-40 and water are used as the test liquids. The free surface shape varies sinusoidally for Ma>M $a_{cr}$ and its frequency is found to be the same as that of temperature oscillation. It is verified that the surface temperature profile changes from linear to S-shaped profile for Ma>M $a_{cr}$ . The frequency of temperature oscillation decreases with increasing liquid volume, while its level increases. M $a_{cr}$ decreases with increasing aspect ratio, and also decreases with increasing Prandtl number in the range of 25

HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS (광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석)

  • Kim, K.;Kim, D.;Kwak, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.