• 제목/요약/키워드: diagonal method

Search Result 522, Processing Time 0.027 seconds

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.

Self-assembly of Helical structure by defected nanosheet

  • Yoon, Sang-hee;Sim, Eunji
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.75-79
    • /
    • 2016
  • A helical nanosturctrue can be obtained by self-assembly method. Utilizing DPD simulation coarse-grained model, we patterned 2D layer nanosheets with repeated diagonal defects and grafts, and programed to self-roll into hollow helix structure. The defected pattern side caused anisotropy, and formed helix or helix-like structure. This opens the possibility to control the helix pitch or cavity radius. In this work, we designed several patterns about diagonal defect with a variety of defect side densities and defect widths and then simulation was carried out. Thus, our results have that parameters are affecting self-assembly of nanosheets and their conformation.

  • PDF

Experiments on a Visual Servoing Approach using Disturbance Observer (외란관측기를 이용한 시각구동 방법의 구현)

  • Lee, Joon-Soo;Suh, Il-Hong;You, Bum-Jae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3077-3079
    • /
    • 1999
  • A visual servoing method has been proposed based on disturbance observer to eliminate the effect of the off-diagonal component of image feature Jacobian, since performance indices such as measurement sensitivity of visual features, sensitivity of the control to noise and controllability could be improved when an image feature Jacobian was given as a block diagonal matrix. In this paper, experimental results of disturbance observer-based visual servoing are discussed where Samsung FARAMAN-ASl 6-axis industrial robot manipulator is employed. Also, the feature saturator is proposed to stabilized the disturbance observer loop by saturating the differential changes of the image features.

  • PDF

Prediction of Wear Depth of SG Tube based on Types of Wear Scar (전열관의 마모 체적형상에 따른 마모깊이 예측)

  • Ryu, Ki-Wahn;Kim, Hyung-Jin;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • Calculation of wear depth with regard to the wear topology is peformed numerically Four typical wear topology, that is round, crescent, flat, and diamond types are adopted to represent the configuration of wear volume. Diamond and flat types are the most severe topology for wear depth history, whereas round and crescent types have small increasing rate of wear depth to the wear volume. Based on this study we can guess that the most severe wear phenomena happens to be upper side of U-tubes in the KSNP SG, because flat or diamond wear will be generated by the wearing motion between tubes and diagonal, vertical, horizontal strips. The misalignment of tube at the stage of manufacturing or distortion of upper structure due to the thermal expansion or vibration of upper structure such as diagonal, vertical, and horizontal strips will be one of the main causes of flat or diamond wear.

  • PDF

Experimental and numerical investigation of walls strengthened with fiber plaster

  • Basaran, Hakan;Demir, Ali;Bagci, Muhiddin;Ergun, Sefa
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.189-200
    • /
    • 2015
  • The topic of this study is to investigate behaviors of masonry walls strengthened with reinforced fiber plaster under diagonal tensile loads. Full blend brick $100{\times}50{\times}30mm$ in dimensions were used to make masonry walls with dimensions of $400{\times}400{\times}100mm$. Three different samples were manufactured by plastering masonry walls with traditional style, with 3% polypropylene or with 5% steel fiber. All the samples were tested using ASTM 1391-81 standards. The propagation of damage on samples caused by diagonal tensile load was observed and load-displacement graphs were plotted for each sample. A finite element software (ABAQUS) was used to obtain numerical values for all samples and crack patterns and load-displacement responses were obtained. Experimental and numerical results were compared.

Scaled-Energy Based Spectrum Sensing for Multiple Antennas Cognitive Radio

  • Azage, Michael Dejene;Lee, Chaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5382-5403
    • /
    • 2018
  • In this paper, for a spectrum sensing purpose, we heuristically established a test statistic (TS) from a sample covariance matrix (SCM) for multiple antennas based cognitive radio. The TS is formulated as a scaled-energy which is calculated as a sum of scaled diagonal entries of a SCM; each of the diagonal entries of a SCM scaled by corresponding row's Euclidean norm. On the top of that, by combining theoretical results together with simulation observations, we have approximated a decision threshold of the TS which does not need prior knowledge of noise power and primary user signal. Furthermore, simulation results - which are obtained in a fading environment and in a spatially correlating channel model - show that the proposed method stands effect of noise power mismatch (non-uniform noise power) and has significant performance improvement compared with state-of-the-art test statistics.

두개의 출력을 갖는 시스템에 대한 well-conditioned 이산관측기의 설계

  • 곽병길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.330-335
    • /
    • 1996
  • The well-conditioned observer design method is extended for two-output systems where observer gains are not determined uniquely with respect to the desired observer poles. Similar to the previous results, this design method makes off-diagonal elements of the observer upper-left submatrix skew-symmetric and simulataneously, places the eigenvalues of the observer matrix widely separated by selecting upper two rows of the observer gain. The proposed design method is evaluated in a spindle-drive example where the load speed is estimated based on motor speed and the armature current.

  • PDF

STRESS ANALYSIS OF ENDODONTICALLY TREATED ANTERIOR TEETH BY ALVEOLAR BONE HEIGHT AND RESTORATION METHOD (근관치료를 받은 전치부에서 수복방법과 치조골높이에 따른 응력분석에 관한 연구)

  • Lee, Yeon-Jae;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.133-150
    • /
    • 1991
  • To study the mechanical behavior depended on the restoration method and alveolar bone height at endodontically treated teeth. a finite element model was made which was applied by four types of restoration methods and alveolar bone height on upper central incisor and then 1 Kg force was applied on each model as follows; 1) $45^{\circ}$ diagonal load on incisal edge. 2) $26^{\circ}$ diagonal load on lingual surface. and 3) horizontal load on labial surface. The author analyzed the displacement and stress of teeth and their supporting tissue by finite element method according to three type of loading conditions. The results were as follows : 1. The displacement by restoration method and the stress in dentin was found greater in restoration without a post than in that with a post. 2. The displacement and stress was found about the same when compared : A) in Resin model and PFM model applied by restoration method without a post and B) in PRC model and CPC model applied by restoration method with a post. 3. The lower alveolar bone height was. the greater was the displacement and stress. 4. The lower alveolar bone height was. the greater slightly was the stress of restoration without a post than in that with a post. 5. The stress in loading condition was the greatest in P1 in dentin and post. and was greatest in P3 in alveolar hone. 6. In the restoration method without a post. stress concentration in labial dentin was distributed to a figure of long belt in adjacent part to periodontal ligament. while in restoration method with a post. it was distributed in adjacent part to post side. And in all types of restoration method stress concentration in alveolar bone was distributed along the compact bone of labial and lingual surface.

  • PDF

In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach

  • De Domenico, Dario;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.423-442
    • /
    • 2018
  • In this paper, masonry infilled reinforced concrete (RC) frames are analyzed through a probabilistic approach. A macro-modeling technique, based on an equivalent diagonal pin-jointed strut, has been resorted to for modelling the stiffening contribution of the masonry panels. Since it is quite difficult to decide which mechanical characteristics to assume for the diagonal struts in such simplified model, the strut width is here considered as a random variable, whose stochastic characterization stems from a wide set of empirical expressions proposed in the literature. The stochastic analysis of the masonry infilled RC frame is conducted via the Probabilistic Transformation Method by employing a set of space transformation laws of random vectors to determine the probability density function (PDF) of the system response in a direct manner. The knowledge of the PDF of a set of response indicators, including displacements, bending moments, shear forces, interstory drifts, opens an interesting discussion about the influence of the uncertainty of the masonry infills and the resulting implications in a design process.