• Title/Summary/Keyword: diagenetic alteration

Search Result 13, Processing Time 0.028 seconds

포항분지에 대한 석유지질학적 연구

  • 김기현;김재호;김상석;박동배;이용일
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.48-55
    • /
    • 1998
  • The Pohang Basin is located in Pohang City and adjacent coastal areas in the southeastern Korea. It has a sequence of 900 meters of Neogene marine sediments (Yeonil Group) while offshore basins in the East Sea, e.g., the Ulleng basin, is over 10 Km in thickness. An understanding of the marine Yeonil Group in the Pohang Basin may provide insights into the hydrocarbon potential of the offshore East Sea regions. Heulandite, smectite, dolomite, kaolinite and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these minerals, heulandite occurs as a main cement only in sandstones consisting of volcanic matrix, Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeonil Group has undergone shallow burial, temperatures below about 60 degrees. This suggest that sandstones have experiened weak diagenetic alteration. In order to reconstruct the thermal history of the basin, apatite fission-track analysis was carried out. Aapparent apatite fission-track ages (AFTAs) exhibit a broader range of ages from 238 Ma to 27 Ma with mean track lengths in the range of $15.24\pm8.0$ micrometers, indicating that these samples had undergone significant predepositional thermal alteration. The Triassic to Cretaceous AFTAs seem In represent the timing of cooling of their sedimentary sources. Late Cretaceous mean AFTA $(79.0\pm8.0 Ma)$ on the Neogene Yeonil Group indicates that the Yeonil Group had not been buried deeper than 2km since its deposition. The organic matters of. the Pohang Basin remain in the immature stage of thermal evolution because burial depth and temperature were not sufficient enough for maturation even in the deep section of the basin.

  • PDF

Synthetic Study of Zeolites from Some Glassy Rocks (II) : Dissolution Behavior of Perlite and Zeolite Synthesis in Alkaline Aqueous Solution (유리질 암석으로부터 제올라이트 합성에 관한 연구(Ⅱ) : 알칼리 용액에서 진주암의 용해 거동과 제올라이트의 합성)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.61-71
    • /
    • 1992
  • Through the low-temperature(60-150${\circ}C$) hydrothermal treatment of perlite with the alkaline solution at various NaOH concentrations, the mode of volcanic glass alteration and resultant zeolite formation were investigated in a closed system. At a temperature of 80${\circ}C$ and alkalinities of pH range 8 to 12, corresponding to the natural environments of diagenetic zeolite formation, only weak dissolution of perlitic glass occurs without zeolite formation despite the residence time of 100 days. Activities of Si and Al increase progressively, as a consequence of increasing pH, whereas activity ratios of Si/Al decrease. Zeolites were synthesized from perlite in the alkaline solution at above 0.1M NaOH concentrations. Below the temperature of 100${\circ}C$ Na-P was mainly formed, whereas analcime was the dominant zeolite at the temperature range of 100-150${\circ}C$. During Na-P synthesis chabazite and Na-X were also formed as by-products in case of lower proportion of solution/sample(<10ml/g) and higher NaOH concentraion (>3M), respectively. The alteration modes of perlite in the zeolite synthesis reflect that the formation of synthetic zeolites occurs as an incongruent dissolution likely with the diagenetic formation of natural zeolites from volcanic glass. Considering much difference in reaction kinetics between natural and synthetic systems, however, the evaluated synthetic conditions in these experiments were not directly applicable to the natural diagenetic system.

  • PDF

Occurrence and Genesis of Zeolites from the Tertiary Volcanic Sediments in the Guryongpo Area, Korea (浦項 九龍浦 지역 第 3 紀 火山堆積岩 中의 沸石鑛物의 産出狀態와 成因)

  • Choi, Yun-Seung;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.38-47
    • /
    • 1993
  • Clinoptilolite and mordenite are important constituents of the Nuldaeri Trachytic Tuff and Guryongpo Dacitic Tuff of the Tertiary Janggi Group which were deposited in a lacustrine environment. The diagenetic cystallization sequences of zeolites in different tuffaceous sediments and their chemical behaviors have been studied to know the process of their formation. The paragenetic sequence established from textural observations and chemical data : Ca-smectite ${\leftrightarrow}$(Ca, K)-clinoptilolite${\leftrightarrow}$(K, Na)-mordenite, indicates that the chemical activities of alkalic ions and Si/Al activity ratio in pore fluids changed systematically with diagenetic alteration. The chemical trend of zeolite formation is characterized by decreasing Ca and Mg, non-variable Na and increasing K in the Nuldaeri Trachytic Tuff and by decreasing Ca and Mg, non-variable Na and increasing-decreasing K in the Guryongpo Dacitic Tuff. The paragenesis from glass via smectite to alkali zeolites indicates a sequence of incongruent dissolution reactions and subsequent crystallization. Inhomogeneity in chemical composition of each zeolite may be attributed to such processes.

  • PDF

Occurrence and Applied-mineralogical Characterization of Diatomite from the Pohang-Gampo Area (포항-감포 지역산 규조토의 산출상태와 응용광물학적 특성)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.311-324
    • /
    • 2006
  • In the Pohang-Gampo area, several diatomite beds occurred in mostly thinner than 1 m are embedded in the Pohang Formation of marine environment and the pyroclastic Eoil Formation. The diatomite from the Eoil Formation is constituting the high-grade ore altered slightly by diagenesis. In contrast, the diatomite intercalated within the upper horizon of the Yeonil Group is comparatively low-grade and highly altered in places. During diagenesis, an increasing of crystallinity of opal, i.e., the original mineral component of diatom, results in ultimately the mineral transition to quartz with accompanying a drastic change in morphology and texture of the altered diatomite. The diagenetic alteration appears to have undergone by way of the chemical diagenesis, which is largely controlled by degree of fluid contact, rather than burial diagenesis. For the diatomite from the Pohang-Gampo area, careful SEM observations, XRD, chemical analyses, and determination of specific surface area were done to identify the fossil species, mineral and chemical composition, and other physical properties in the view of assesment of grade and quality. The domestic diatomite ores are evaluated to be not good in grade and quality, compared to those of famous foreign localities. However, some diatomite deposits of marin,: origin from the Pohang Formation is constituting a peculiar clay-rich type, i.e., moler applicable to the special usage such as a manufacturing of lightweight brick. Because such a diatomite is frequently intercalated relatively as a thicker bed in the upper part of the Yeonil Group, a systematic and careful investigation should be done for the exploitation and development of an economic diatomite deposit of the moler type.

Asbestiform Tremolite Formed by Chert-Dolomite Reaction and Its Morphological Characteristics (처트-백운석 반응에 의한 석면상 투각섬석의 생성과 형태적 특성)

  • Jeong, Gi Young;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • Diagenetic black chert nodules occur in the Paleozoic dolostone in Susan, Jecheon, Korea. They reacted with dolomite to form alteration rim around the nodules during the contact metamorphism probably related to the intrusion of biotite granite. In the earlier stage of alteration, talc and calcite replaced both the chert and dolomite, which were subsequently replaced by tremolite. Significant mass of tremolite occurs along the horizon enriched with chert nodules. Scanning electron microscopy and optical microscopy of the tremolite specimens revealed the elongated morphology of diverse aspect ratios coexisting in several mm scale. Non-asbestiform tremolite columns were also common as well as asbestiform fibrous bundles. Quantitative estimation of asbestos should be more cautious for naturally occurring materials because all the tremolite particles in the outcrop are not asbestiform. The occurrence of asbestiform tremolite in the Susan area indicates that a combination of chert-bearing dolostone, heat source, and aqueous fluids is one of the geological environments for the formation of asbestiform tremolite.

Berthierine and Nontronite from Sangdong Tungsten Deposits (상동중석광산에서 산출되는 Berthierine과 Nontronite)

  • Kim, Soo Jin;Kim, Won-Sa;Chang, Se-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.104-116
    • /
    • 1988
  • Berthierine and Nontronite are firstly identified in the Sangdong tungsten ore deposits. Quantitative and qualitative analyses by EPMA and the studies using X-ray diffraction, transmission electron microscopy, and infrared absorption spectroscopy were done to characterize berthierine and nontronite. The data from berthierine are in good agreement with those from other localities. The structural data of the Sangdong berthierine are consistent with the orthorhombic, pseudo-hexagonal form which is more common in samples with high $SiO_2$ and low $Al_2O_3$ content. Geologic features suggest that the Sangdong berthierine is diagenetic in origin. However, nontronite might be a product of hydrothermal alteration after the tungsten mineralization.

  • PDF

Feldspar Diagenesis and Reseuoir History of the Miocene Temblor Formation, Kettleman North Dome, California, U.S.A. (미국 캘리포니아주 케틀만 노스돔의 마이오세 템블러층에서 장석의 속성작용과 저류암의 발달사)

  • Lee Yong Il;Boles James R.
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.16-27
    • /
    • 1995
  • The Early Miocene Temblor Formation forms an important sandstone reservoir at Kettleman North Dome oil field, California. Sandstones are mostly arkosic in composition except deepest sandstones containing much volcanic rock fragments. Arranged in paragenetic sequence prior to feldspar alteration, the Temblor sandstones contain cements of early calcite, dolomite, quartz, albite, mixed-layer ohloriteismectite (C/S) and smectite, and anhydrite. Diagenetic changes associated with feldspar are albitization of plagioclase, late calcite and laumontite cementation and grain replacement, plagioclase dissolution, and kaolinite cementation. Plagioclase albitization and late calcite and laumontite cementation in Temblor sandstones occurred at the time of maximum burial with temperatures up to $130^{\circ}C$. Volcanic plagioclases were selectively albitized. Most diagenetic changes are interpreted to have occurred before the maior uplift which occurred within the last one million years ago. Since then to the time of hydrocarbon emplacement plagioclase dissolution and kaolinite cementation occurred. This reaction occurred in relatively closed system due to the occurrence of kaolinite next to the site of plagioclase dissolution. Unaltered part of volcanic plagioclase and plutonic plagioclase which escaped albitization during maximum burial were preferentially dissolved to make plagioclase porosity. Secondary porosity resulting from dissolution of plagioclase and carbonate and anhydrite cements was mainly produced by formation waters containing organic acids released during atagenesis of organic matter.

  • PDF

Reconstruction of Nitrate Utilization Rate Change Based on Diatom-bound Nitrogen Isotope Values in the Central Slope Area of the Bering Sea during the Early Pleistocene (2.4-1.25 Ma) (플라이스토세 전기(2.4-1.25 Ma) 동안 베링해 중부 대륙사면 지역의 규조 골격내 유기물 질소동위원소 값에 의한 질산염 이용률의 변화 복원)

  • Kim, Sunghan;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.195-207
    • /
    • 2016
  • Because the high latitude region in the North Pacific is characterized by high primary production in the surface water enriched with nutrients, it is important to understand the variation of surface water productivity and associated nutrient variability in terms of global carbon cycle. Surface water productivity change or its related nutrient utilization rate during the Northern Hemisphere Glaciation (NHG; ca. 2.73 Ma) has been reported, but little is known about such circumstances under gradual climate cooling since the NHG. Bulk nitrogen isotope (${\delta}^{15}N_{bulk}$) of sedimentary organic matter has been used for the reconstruction of nutrient utilization rate in the surface water. However, sedimentary organic matter experiences diagenesis incessantly during sinking through the water column and after burial within the sediments. Thus, in this study we examine the degree of nitrate utilization rate during the early Pleistocene (2.4-1.25 Ma) since the NHG, using the diatom-bound nitrogen isotope (${\delta}^{15}N_{db}$), which is known to be little influenced by diagenesis, from Site U1343 in the Bering slope area. ${\delta}^{15}N_{db}$ values range from ~0.5 to 5.5‰, which is lower than ${\delta}^{15}N_{bulk}$ values, but they vary with larger amplitude. Variation patterns between ${\delta}^{15}N_{db}$ values and biogenic opal concentration are generally consistent, which indicates that the nitrate utilization rate is closely related to opal productivity change in the surface water. A positive correlation between opal productivity and nitrate utilization rate was observed, which is different from the other high latitude regions in the North Pacific. The main reason for this contrasting relationship is that the primary production in the surface water at Site U1343 is influenced mostly by the degree of sea ice formation. Still, although concerns about diagenetic alteration have been avoided by using ${\delta}^{15}N_{db}$, the effects of the preservation state of biogenic opal and the species-dependent isotopic fractionation on ${\delta}^{15}N_{db}$ should be assessed in the future studies.

Rod-shaped Stromatolites from the Jinju Formation, Sacheon, Gyeongsangnam-do, Korea (경상남도 사천시 진주층에서 산출되는 막대기형 스트로마톨라이트)

  • Choi, Chong-Geol
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.54-63
    • /
    • 2007
  • The sedimentary sequence of the non-marine Cretaceous Jinju Formation from Sacheon, Korea, contains a number of rod-shaped stromatolites (RSS) characterized by concentric lamination with curd-shaped, stratiform, and small columnar stromatolites. Unlike the world trend, a massive distribution of rod-shaped stomatolite was discovered in the region. The mineral composition, diagenetic alteration, and weathering process of the kind were analyzed by EPMA. The gross morphology of RSS is almost identical to broken plant twigs or stems formed by microbial activity onto which it grew. RSSs are interpreted as stromatolitic algae over plant twigs, which formed through concentric carbonate precipitation by epiphytic algal photosynthesis. The distribution of localities and horizons of the stromatolite imply that RSS is allochthonous and autochthonous. Two types of cyanobacterial filaments and one type of peen algal filament were discovered. The size frequency distribution of calcified filamentous microfossils found in stromatolite was $2.2{\mu}m\;and\;7.8{\mu}m$ in mean diameter of the former, $32.3{\mu}m$ in mean diameter of the latter. The cyanobacterial fossils played a key role in the formation of stromatolite, while the green algal filament was auxiliary stromatolite-builder stromatolites. The filamentous microfossils including trichome were found within the stromatolitic laminae.

Mineralogical Characteristics and Genetic Environment of Zeolitic Bentonite in Yeongil Area (영일 지역 제올라이트질 벤토나이트의 광물특성 및 생성환경)

  • 노진환;고상모
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.135-145
    • /
    • 2004
  • A zeolitic bentonite, which exhibits whitish appearance and contains considerable amounts (nearly 〉 5%) of zeolites, frequently occurs as thin beds less than 1 m in Yeongil area. The bentonites are mostly found in closely association with zeolite beds in the Nuldaeri Tuff and Coal-bearing formations of the Janggi Croup. A discordant occurrence of the bentonite against the bedding plane is also locally found. Montmorillonite, the major mineral constituent of the bentonite, is mostly associated with clinoptilolite as a zeolite. However, instead of clinoptilolite, mordenite is sometimes included in the case of more silicic bentonite, and heulandite in the less silicic one. It is characteristic that the mordenite is accompanied by lots of opal-CT in the silicic bentonite. SEM observations characteristically indicate that these authigenic phases, especially the montmorillonite and zeolite, nearly coexist as mixtures not forming a fine-scale zoning. The zeolitic bentonite seems to be formed in the comparatively silicic pore fluid at the alkaline condition accompanying pH fluctuation Compared to the zeolite-free normal bentonite, the zeolitic types exhibit somewhat higher REE abundance. These chemical characteristics, together with modes of occurrences and authigenic mineral associations, may suggest that the zeolitic bentonite is not merely diagenetic products and a possible hydrothermal alteration could not be excluded in the bentonite genesis.