• 제목/요약/키워드: diacylglycerol kinase

검색결과 38건 처리시간 0.028초

Design and Synthesis of Bioisosteres of Ultrapotent Protein Kinase C(PKC) Ligand, 5-Acetoxymethyl-5-hydroxymethyl-3-alkylidene tetrahydro-2-furanone

  • Lee, Jee-Woo
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.452-457
    • /
    • 1998
  • Three compounds, 5-(acetoxymethyl)-5-(hydroxymethyl)-3-tetradecyl-2,5-dihydro-2-furanone (3), 5-(acetoxymethyl)-5-(hydroxymethyl)-3,3-dihexyltetrahydro-2-furanone (4) and 5-(acetoxymethyl)-5-(hydroxymethyl)-3,3-dioctyltetrahydro-2-furanone (5), were designed and synthesized as surrogates of the ultrapotent DAG analogue, 5-(acetoxymethyl)-5-(hydroxymethyl) 3-[(Z)-tetradecylideneltetrahydro-2-furanone (1), a compound that showed high affinity for PKC-$\alpha$ ($K_1$=35 nM) in a competition binding assay with [$^3H$-20]phorbol-12,13-dibutyrate (PDBU). In an attempt to overcome the problem of generating geometrical E- and Z- isomers, as encountered with 1, the double bond was moved to an endocyclic location as in 3, or an additional alkyl chain was appended to C3 to give the corresponding 3,3-dialkyl saturated lactones (4 and 5). The lactone was constructed from glycidyl-4-methoxyphenyl ether in 5 steps. The target compounds showed reduced binding affinities for PKC-.alpha. with $K_{i}$ values of 192 nM (3), 4,829 nM (4), and 2,812 nM (5), respectively. These results indicate that constrained DAG analogues having a tetrahydro-2-furanone template are effectively discriminated by PKC-(X in terms of the direction of the long alkyl chain connected to the 3-position.n.

  • PDF

초파리 rdgA 시각돌연변이체 단안의 형태적 연구 (Ultrastructure of Ocellus in Drosophila melanogaster Visual Mutant rdgA)

  • 윤춘식
    • 생명과학회지
    • /
    • 제9권3호
    • /
    • pp.308-313
    • /
    • 1999
  • Ocellar morphological abnormality was studied in Drosophila rdgA mutant. In the mutant, ocellar photoreceptor cells were generally affected by the defection of rdgA molecules. Among organelles of photoreceptor cell, rhabdomeres were remarkably degenerated. The rdgA molecule, diacylglycerol kinase, was localized around SRC just below the rhabdomeric region. As a secondary phenomenon of photoreceptor degeneration, rER, multivesicular body and multilamella body were appeared in cytoplasm and these were known as to clean the cellular debris. These morphological abnormality was generally observed in degenerating cells. In Drosophila mutant, the degeneration of ocellar photoreceptor cell was facilitated to time. More intense morphological defection was observed in rdgA^{ks60} rather than in yw;rdgApc47.

  • PDF

Inositol이 돼지 난포란의 성숙에 미치는 영향

  • 조인식;이상미;정영희;강승률;문승주;강만종
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.95-95
    • /
    • 2003
  • Inositol은 세포의증식 및 정보전달과정에 관여하는 phosphatidylinositol (PI)의 구성성분으로서 중요한 세포내 기능을 수행한다. P1는 세포내에서 특이적 인산화효소에 의하여 Pl4-phosphate(PIP), Pl4,5-phosphate($PIP_2$)로 변환되며 PIP$_2$는 phospholipase C(PLC)에 의하여 세포내 second messengers인 1,2-diacylglycerol (DAG)와 inositol 1,4,5-triphosphate ($IP_3$)로 변환된다. 이렇게 생산된 DAG와 IP3는 각각 protein kinase C의 활성과 $Ca^{2++}$의 동원에 관여하여 다양한 세포내 신호전달에 관여하는 것으로 보고되고 있다. 또한 mouse에서 $IP_3$의 작용에 의한 $Ca^{2++}$의 상승은 난모세포의 성숙분열이 촉진되고 돼지 난포세포에 있어서도 PI대사가 일어나고 있는 것으로 보고되고 있다. 본 연구에서는 돼지 미성숙 난모세포의 성숙과 단위발생에 미치는 inositol의 영향을 확인하기 위하여 실시하였다. inositol의 농도가 난포란의 성숙에 미치는 영향을 검토하기 위하여 난포란을 각각 $150 \mu mole$, $250 \mu mole$, $350 \mu mole$, inositol을 포함하는 Whitten's 배양액에서 44시간 성숙시킨 결과 $93.57 \pm 4.21, 93.91 \pm 2.71, 92.96 \pm 3.58%$가 성숙되어 대조구의 $87.10 \pm 4.21$보다 유의적(P<0.05)으로 차이를 나타내었다. 난포란의 등급에 따른 inositol의 영향을 확인하기 위하여 형태적으로 난구세포가 치밀한 난포란과 난구세포가 치밀하지 않은 난포란을 $250 \mu mole$ inositol을 포함하는 Whitten's 배양액에서 성숙을 유도한 결과 난구세포가 치밀한 난포란과 난구세포가 치밀하지 않은 난포란에서 inositol을 첨가하였을 때 성숙율은 각각 $95.35 \pm 2.22와 63.55 \pm 8.12$로 inositol을 첨가하지 않은 대조구보다($89.21 \pm 3.69와 48.56 \pm 8.99$) 유의적인 차이를 보였다. 난구세포가 inositol에 의한 성숙에 미치는 영향을 확인하기 위하여 난구세포를 제거한 난포란을 inositol을 포함하는 배지에서 성숙을 유도한 결과 inositol을 첨가하지 않은 처리구보다 양호한 성숙율을 보였다.

  • PDF

식이의 Conjugated Linoleic Acid (CLA) Isomer가 DMH로 처리한 쥐에서 대장점막의 종양발생과 Cyclooxygenase-2 및 Protein Linase C 단백질 발현에 미치는 영향 (Effect of Dietary Conjugated Linoleic Acid (CLA) Isomers on Tumor Incidence and the Protein Expression of Cyclooxygenase-2 and Protein Kinase C in Colonae Mucosa of DMH-Treated Rats)

  • 박현서;전창수;윤정한
    • Journal of Nutrition and Health
    • /
    • 제37권9호
    • /
    • pp.763-770
    • /
    • 2004
  • This study was designed to compare the anti-carcinogenic effect of conjugated linoleic acid isomers on tumor incidence, cell proliferation and the levels of thromboxane (TX) B$_2$, prostaglandin (PG) E$_2$ and 1,2-diacylglycerol (DAG), and the related enzyme expression of cyclooxygenase (COX)-2 and protein kinase C (PKC) in colonic mucosa of 1,2-dimethy- lhydrazine (DMH) -treated rats. One hundred eight male Sprague Dawley rats were randomly divided into 3 groups depending on the types of CLA isomers, i.e. control group (no CLA contained), c9t11 group (cis-9, trans-11 CLA contained), and t10c12 group (trans-10, cis-12 CLA contained). The experimental diet was composed of protein at 20%, carbohydrate at 56.2%, and fat at 14.5% including 1.0% CLA isomers by weight. The experimental diet was fed for 30 weeks with the initiation of intramuscular injection of DMH, which was injected twice a week for 6 weeks to give total dose of 180 mg per kg body weight. Two CLA isomers (c9, t11, t10, c12) significantly reduced tumor incidence and cell proliferation by reducing the protein expression of COX-2 and PKC, and the level of TXB$_2$, PGE$_2$, and DAG in colonic mucosa. However, there was no significant difference in anti-carcinogenic effect between c9t11-CLA and t10c12-CLA.

Modulation of $GABA_A$ Receptor by Protein Kinase C in Autonomic Major Pelvic Ganglion Neurons

  • ;;;공인덕
    • 대한의생명과학회지
    • /
    • 제14권2호
    • /
    • pp.69-76
    • /
    • 2008
  • ${\gamma}$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system, and its actions are mediated by subtypes of GABA receptors named as $GABA_A$, $GABA_B,\;and\;GABA_C,\;GABA_A$, receptor consisting of ${\alpha},\;{\beta},\;{\gamma}\;and\;{\delta}$ subunits is a heterooligomeric ligand-gated chloride channel. This study was performed to investigate regulation of $GABA_A$ receptor by protein kinase C(PKC). Ion currents were recorded using gramicidine-perforated patch and whole cell patch clamp. mRNA encoding the subunits of PKC expressed in major pelvic ganglion (MPG) neurons was detected by using RT-PCR. The GABA-induced inward current was increased by PKC activators and decreased by PKC inhibitors, respectively. These effects were not associated with intracellular $Ca^{2+}$ and GAG (1-oleoyl-2-acetyl-sn-glycerol), a membrane permeable diacylglycerol (DAG) analogue. These results mean that the subfamily of PKC participating in activation of $GABA_A$ receptor would be an atypical PKC (aPKC). Among theses, ${\xi}$ isoform of aPKC was detected by RT-PCR. Taking together, we suggest that excitable $GABA_A$ receptor in sympathetic MPG neuron seemed to be regulated by aPKC, particular in ${\xi}$ isoform. The regulatory roles of PKC on excitatory $GABA_A$ receptors in sympathetic neurons of MPG may be an important factor to control the functional activity of various pelvic organs such as bowel movement, micturition and erection.

  • PDF

Cromakalim Blocks Membrane Phosphoinositide Activated Signals in the Guinea Pig Lung Mast Cells Stimulated with Antigen-Antibody Reactions

  • Ro, Jai-Youl;Kim, Ji-Young;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.251-260
    • /
    • 1998
  • Cromakalim (BRL 34915), known as an airway smooth muscle relaxant, inhibited the releases of mediators in the antigen-induced mast cell activation. It has been suggested that cromakalim, in part, inhibited mediator releases by inhibiting the initial increase of 1,2-diacylglycerol (DAG) produced by the activation of the other phospholipase system which is different from phosphatidylcholine-phospholipase D pathway. The aim of this study is to further examine the inhibitory mechanism of cromakalim on the mediator release in the mast cell activation. Guinea pig lung mast cells were purified by using enzyme digestion and percoll density gradient. In purified mast cells prelabeled with $[^3H]PIP_2$, phospholipase C (PLC) activity was assessed by the production of $[^3H]$insitol phosphates. Protein kinase C (PKC) activity was assessed by measuring the protein phosphorylated from mast cells prelabeled with $[{\gamma}-32P]ATP$, and Phospholipase $A_2\;(PLA_2)$ activity by measuring the lyso-phosphatidylcholine produced from mast cell prelabeled with 1-palmitoyl-2-arachidonyl $phosphatidyl-[^{14}C]choline$. Histamine was assayed by fluorometric analyzer, and leukotrienes by radioimmunoassay. The PLC activity was increased by activation of the passively sensitized mast cells. This increased PLC activity was decreased by cromakalim pretreatment. The PKC activity increased by the activation of the passively sensitized mast cells was decreased by calphostin C, staurosporine and cromakalim, respectively. The $PLA_2$ activity was increased in the activated mast cells. The pretreatment of cromakalim did not significantly decrease $PLA_2$ activity. These data show that cromakalim inhibits histamine release by continuously inhibiting signal transduction processes which is mediated via PLC pathway during mast cell activation, but that cromakalim does not affect $PLA_2$ activity related to leukotriene release.

  • PDF

일차 배양 혈관 평활근 세포에서 포도당 농도에 의한 엔도톡신 유도 프로스타글란딘 합성 변화 (Enhancement of Endotoxin-Induced Prostaglandin Synthesis by Elevation of Glucose Concentration in Primary Cultured Rat Vascular Smooth Muscle Cells)

  • 이수환;우현구;김지영;백은주;문창현
    • 약학회지
    • /
    • 제41권6호
    • /
    • pp.782-788
    • /
    • 1997
  • This study was designed to characterize glucose-enhancing effects on endotoxin-induced prostaglandin production in primary cultured rat vascular smooth muscle cells (VSMC). High glucose treatment significantly augmented prostaglandin (PG) synthesis in lipopolysaccharide (LPS)-stimulated VSMC and this effect was maximal at the concentration of 4mg/ml. It has been reported that increases in glucose metabolism through sorbitol pathway could alter the cytosolic $NADH/NAD^+$ ratio and this change favors de novo synthesis of diacylglycerol (DAG) and, in turn. Results in the activation of protein kinase C (PKC) in vascular tissues. Protein kinase C (PKC) inhibitors, staurosporin and H7, blocked the glucose enhancing effect, and DAG, a PKC activator, significantly increased the PG production stimuated by LPS. Sodium pyruvate, which can reverse the alteration in cytosolic NADH/NAD+ ratio, reduced the high glucose effect on PG production. And also, zopolrestat, a strong aldose reductase inhibitor, almost completely blocked the augmentation effect of glucose on PG synthesis. Arachidonic acid release was significantly increased in high glucose treated group, which implied the increase in $PLA_2$ activity was associated with glucose enhancing effect. Metabloic, labeling study clearly showed that de novo synthesis of prostaglandin H synthase-2 (PGHS-2) is greatly increased in high glucose treated group and this was mitigated by the treatment of zopolrestat. Taken together, the activation of PKC through sorbitol pathway increased the activities of $PLA_2$ and PGHS which resulted in the augmentation in LPS-induced PG production in high glucose treated VSMC.

  • PDF

Involvement of Phospholipase D in Norepinephrine Uptake in PC12 Cells

  • Rhee, Jong-Joo;Oh, Sae-Ock;Kim, Young-Rae;Park, Jong-Il;Park, Seung-Kiel
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.287-293
    • /
    • 2009
  • Phospholipase D (PLD) is an enzyme hydrolyzing phosphatidylcholine to phosphatidic acid (PA) and choline. We investigated the involvement of PLD1 in the uptake of norepinephrine (NE) in PC12 cells, pheochromocytoma cells. NE uptake was specific in PC12 cells because nomifensine, a specific blocker of NE transporter, blocked NE uptake. Inhibition of PLD function in PC12 cells by the treatment of butanol suppressed the NE uptake. In contrast, overexpression of PLD1 in PC12 cells increased NE uptake efficiently. These results suggest that PLD activity is involved in NE uptake. We explored the action mechanism of PLD in NE uptake. PA phosphatase inhibitor, propranolol, blocks the formation of PKC activator diacylglycerol from PA. Propranolol treatment to PC12 cells blocked dramatically the uptake of NE. Specific PKC inhibitors, GF109203X and Ro31-8220, blocked NE uptake. Taken together, we suggest for the first time that PLD1 activity is involved in NE uptake via the activation of PKC.

  • PDF

Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이 (Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease)

  • 장현준;최장현;장종수
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ)는 phosphatidylinositol을 가수분해하여 신호전달 과정에 참여하는 PLC의 주요한 isotype으로 γ-specific array의 특징적인 구조를 바탕으로 receptor tyrosine kinases 및 non-receptor tyrosine kinase 신호를 주로 매개한다. PLCγ1과 PLCγ2의 두 isozyme이 존재하며 다양한 세포에서 발현하여 cell proliferation, migration 및 differentiation 등 여러 세포작용을 조절하고 있다. 최근의 연구들에서 PLCγ 돌연변이가 cancer와 immune disease 및 brain disorder 등에 연관된다는 것이 밝혀지고 있으며 genetic model을 통해 PLCγ의 생리적·병리적 기능이 제시되었다. 본 리뷰에서는 최신의 연구 결과들을 바탕으로 PLCγ의 구조와 활성 조절 기전에 대해 기술하고 나아가 여러 질병의 발병과 진행에서 보고된 PLCγ의 돌연변이와 knockout 마우스를 활용한 연구 결과를 바탕으로 생리적·병리적 관점에서 PLCγ의 역할에 대해 고찰하였다.

브라디키닌의 Phospholipase D 활성화기전

  • 박경협;정진호;정성현;정지창
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.274-274
    • /
    • 1994
  • 본 연구에서는 토끼신장 근위세뇨관 일차배양세포에서 브라디키닌의 생리작용이 phospholipase D (PLD)에 의해 매개되는지를 살펴 보기위해 PLD 효소반응의 특이한 성질인 transphosphatidylation 반응의 생성물인 phosphatidylethanol (PEth) 의 세포내 양을 측정함으로 PLD 효소의 관련성을 규명할 수 있었다. 시간경과에 따른 phosphatidic acid (PA) 및 diacylglycerol (DAG) 의 생성을 살펴본 결과 PA가 DAG보다 먼저 생성되어 최고치 (30초)에 도달하였고 DAG는 1분이후부터 5분까지 서서히 생성되는 양상을 나타내었다. 또한 0.5에서 5%까지의 에탄올 존재하에 PA 및 PE소 생성량을 비교해본 결과 에탄올량이 증가함에 따라 PA는 감소하는 반민 PEth 의 생성은 계속 증가하였다. 한편 브라디키닌 농도 변화 실험에서는 브라디키닌농도가 증가함에 따라 PA 및 PEth 둘다 생성이 증가되었다. 이러한 결과로부터 토끼신장 근위세뇨관 세포막에 존재하는 브라디키닌수용체는 브라디키닌에 의해 activation 시 PLD를 직접적으로 활성화시켜 그들의 작용을 세포내로 전달한다는 사실을 알 수 있었다. 또한 PLD 효소활성의 activator로 수용체효능 제외에 칼슘이온, protein kinase C (PKC) 등이 몇몇 다른 실험에 의해 밝혀져 있고, G protein 역시 PLD 효소 활성을 조절하는 역할이 있음이 알려졌다. calcium ionophore 및 칼슘채널길항제인 verapamil을 이용한 실험에서 우리는 브라디키닌의 PLD 활성화는 칼슘이온에 의존적인 경로 및 비의존적인 경로가 같이 존재함을 알수 있었다. 또한 브라디키닌의 PLD 활성화기전이 PKC 의존적인지를 살펴보기위해 PKC activator(PMA) 및 inhibitor (staurosporine)를 이용한 실험에서 브라디키닌은 신장세포에서 PKC를 통하여 PLD를 활성화시킴으로 신호전달을 하는 것으로 추측되었다. 마지막으로 가수분해안되는 G protein 유도체인 GTPrS 및 G protein 활성물질 NaF, 백일해독소등을 이용한 실험에서 G protein 의 PLD 조절활성을 확인할 수 있었다.

  • PDF