• Title/Summary/Keyword: deviation of position

Search Result 517, Processing Time 0.031 seconds

A Fuzzy Tension Control Method for the Coupled Looper System at the Hot Rolling Process (열연 루퍼시스템의 퍼지 장력제어)

  • Hur, Yone-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.1006-1012
    • /
    • 2010
  • The hot rolling process ranks the highest position for production in steel making process. The hot strip manufacturing processes consist of the reheating furnace, roughing and finishing mill and coiler. The reheating furnace heats the slab. The roughing and finishing mill produce the hot strip from slab. The hot strip quality mainly depends on finishing mill, which consists of 4-high 7 stands. The looper is installed between stands and is used for controlling the strip tension by the looper angle for better material flow. It is difficult to control the strip tension with the coupled looper system from interaction between the looper angle and strip tension. Too much deviation of strip tension severely affects the poor width quality of the hot strip. It is important to control simultaneously both the looper angle and strip tension with each of their target values. This paper proposes the fuzzy tension control, which is developed to minimize the width deviation of the hot strip by maintaining the proper strip tension between stands and to achieve the stable operation of the coupled looper system. The fuzzy tension control performance is compared with the conventional PID control by experimental results.

Deviation of sound pressure level in receiving room according to the heavy-weight floor impact sources and it's positions (중량 바닥충격음 충격원의 종류 및 위치에 따른 수음실 음압레벨 변화)

  • Ju, Mun Ki;Han, Myung Ho;Oh, Yang Ki
    • KIEAE Journal
    • /
    • v.9 no.4
    • /
    • pp.23-28
    • /
    • 2009
  • Standard sound source currently used in heavy-weight floor impact sounds that cause many social problems has excessive low-frequency energy within a range from 63 Hz to 125 Hz, and is difficult to evaluate and measure. To solve these problems, studies are widely performed using a new impact source, the impact ball. In this study, the sound fields in a receiving room were compared and analyzed according to the current impact source, the bang machine, and the impact ball. And deviation of sound pressure level according to the impact source positions were compared. In case of impact ball, the sound pressure level was lower at 63 Hz and below and higher at 125 Hz and above. The same trend was observed at the low-frequency range on the horizontal and vertical planes, regardless of the type of the impact source, which showed the influence of the room mode. There was a problem with the variations in the sound pressure level according to the size or shape of the receiving room. And it also shows that change of source positions may effect the single number rating scheme.

A Study on Mandibular Opening and Closing Movements at Mandibular incisor region and Clinical Rest Position (하악 전치부의 개폐운동과 안정위에 관한 연구)

  • Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.143-154
    • /
    • 1989
  • The purpose of this study was to investigate the mandibular opening and closing movements at mandibular incisor region and clinical rest position in normal subject using the newly developed electric mandibular movement analyzing device, (M.K.G.-K6 diagnostic system, Myo-tronics Inc. Seattle, WA, U.S.A.) The 58 normal subjects, who were students of the College of Dentistry, Chonbuk National University, were selected according to sampling criteria. The obtained results were as follows: 1. There was no significant difference of distribution of opening and closing movement patterns at mandibular incisor region between male and female. There was significant difference between habitual and maximum movement patterns both in sagittal and frontal plane. 2. Although the percentage of distribution of crossover pattern was highest in all cases, but there were significant differences between patterns only at habitual opening and closing movement in sagittal plane. 3. The mean of maximum opening was $47.29{\pm}4.68mm$ in male and $42.15{\pm}4.95mm$ in female. Therefore the mean of maximum opening was larger in male than in female. 4. The mean of maximum laterotrusion in frontal trajectory was larger to the left than to the right. Also the proportion of left deviation at maximum opening position was larger than that of other cases. 5. The mean of maximum opening and closing velocity was higher in male than in female and the mean of closing velocity was higher than that of opening velocity. Also the amount of separation from the centric occlusion was higher in maximum closing velocity than in maximum opening velocity. 6. Clinical rest position was $1.70{\pm}0.99mm$ inferior, $0.74{\pm}0.57mm$ anterior, $0.99{\pm}0.51mm$ right from centric occlusion and the A/V ratio was 1:2.7.

  • PDF

Effects of the seat position in the theater on visual fatigue, presence and perceived characteristics (3D 영화 상영관의 좌석별 위치에 따른 시각피로도, 프레즌스, 그리고 인지된 특성 분석)

  • Chung, Dong-Hun
    • Journal of the HCI Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • This paper deals with the effects of seat position in the theater on viewers' visual fatigue, presence, and perceived characteristics. As a result of this study, there is a significantly positive effect of Dx(deviation from mean distance from the screen) and viewing angle on visual fatigue. Second, there is no significant effect of seat position on presence. Finally, there is a significantly negative effect of Dx and viewing angle on perceived characteristics. This means, as the author assume, the seat position in the theater during watching a 3D movie is important in case of visual fatigue and perceived characteristics. This paper provides an empirical result related to effect of spatial variable at 3D theater on 3D effect. The results could be helpful to establish spatial standard in 3D theater and 3D contents; furthermore, it could help to establish regulations of visual fatigue induced from 3D effects and indications for 3D efficiency.

  • PDF

CONDYLAR ADAPTATION UNDER LATERAL DEVIATION OF THE RABBIT MANDIBLE (가토의 하악골 측방 변위에 의한 하악과두 변화)

  • Park, Hae-Sung;Park, Young-Ju;Ahn, Byoung-Keun;Rhee, Gun-Joo;Park, Jun-Woo;Lee, Young-Chan;Cho, Byoung-Ouck
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.5
    • /
    • pp.446-454
    • /
    • 2000
  • Condylar process of mandible is an important and fuctionally versatile part of the mandible. There were quite large amount of investigations on the functional and anatomical adaptation of the temporomandibular joint(TMJ) to the surrounding tissues. But controversies on the mechanism of functional adaptation of the joint still exist. In this research, we investigated changes in the TMJ by the lateral deviation of the maxillary incisor to shift the mandible right, and bone the undecalcified microscopic sections with fluorescent microscope and von Kossa staining with bright field microscope. Results were as follows: 1. Lateral deviation rendered shifting and tilting of the mandible, There were, compressions in the right joint and opening of the left joint space at early stage. At the same time, both condyles shifted slightly to anterior. 2. After $2{\sim}4$ weeks, left condyle showed anterior displacement and compressions in the joint space. Right condyle showed only slight shift to the anterior. 3. Regardless of the direction of the lateral shift, anterior bite plate compressed both condyle heads until 2 weeks. 4. There are bone resorptions in the anterior aspect of the condyle head and apposition of posterior border. Bone remodeling were observed between 3 and 4 weeks. 5. After 8 weeks of the experiment, there were little differences in condylar morphology between experimental and control group, though slight shifting and compression were still present in the experimental group. Lateral deviation of mandible evoked active remodeling of the TMJ until functional and anatomical reconstruction of TMJ position was achieved.

  • PDF

Ball movements in various surface angles of uphill putting based on different ball positions (오르막 퍼팅 동작 시 볼의 위치가 퍼터와 볼의 움직임에 미치는 영향)

  • Ryu, Jong-Wook;Kim, Jai-Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.448-455
    • /
    • 2019
  • This study aims to discover whether there are other factors, such as the ball position and address that will increase the percentage of holed putts from different angles of surface. In this study, we selected five male tour professional golfers that has been of 15 years or longer on the Korea Golf Association. As a research tool, after installing a video camera at an artificial site that's similar with the real green, and with the player's own putter, motion analysis was carried out using a Titleist V1x, which is commonly used by golfers. We use SPSS programs, significance level a=.05. According to the ball movement during the ball movement during the ball position putt by section, it is confirmed that the ball speed and angular velocity increase as the ball position changes from left to right. If the uphill putt, ball movement was found to be increased same change flat putt and There is no significance deviation. In this study, we investigate how the clubface and ball move during impact by varying the position of the address ball according to the slope during the ascent putt, which should increase the success rate among the various slopes. This study was conducted to present scientific data.

Evaluation of Target Position's Accuracy in 2D-3D Matching using Rando Phantom (인체팬톰을 이용한 2D-3D 정합시 타켓위치의 정확성 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Purpose: The aim of this study is to compare patient's body posture and its position at the time of simulation with one at the treatment room using On-board Imaging (OBI) and CT (CBCT). The detected offsets are compared with position errors of Rando Phantom that are practically applied. After that, Rando Phantom's position is selected by moving couch based on detected deviations. In addition, the errors between real measured values of Rando Phantom position and theoretical ones is compared. And we will evaluate target position's accuracy of KV X-ray imaging's 2D and CBCT's 3D one. Materials and Methods: Using the Rando Phantom (Alderson Research Laboratories Inc. Stanford. CT, USA) which simulated human body's internal structure, we will set up Rando Phantom on the treatment couch after implementing simulation and RTP according to the same ways as the real radioactive treatment. We tested Rando Phantom that are assumed to have accurate position with different 3 methods. We measured setup errors on the axis of X, Y and Z, and got mean standard deviation errors by repeating tests 10 times on each tests. Results: The difference between mean detection error and standard deviation are as follows; lateral 0.4+/-0.3 mm, longitudinal 0.6+/-0.5 mm, vertical 0.4+/-0.2 mm which all within 0~10 mm. The couch shift variable after positioning that are comparable to residual errors are 0.3+/-0.1, 0.5+/-0.1, and 0.3+/-0.1 mm. The mean detection errors by longitudinal shift between 20~40 mm are 0.4+/-0.3 in lateral, 0.6+/-0.5 in longitudinal, 0.5+/-0.3 in vertical direction. The detection errors are all within range of 0.3~0.5 mm. Residual errors are within 0.2~0.5 mm. Each values are mean values based on 3 tests. Conclusion: Phantom is based on treatment couch shift and error within the average 5mm can be gained by the diminution detected by image registration based on OBI and CBCT. Therefore, the selection of target position which depends on OBI and CBCT could be considered as useful.

  • PDF

A COG Variable Analysis of Air-rolling-breakfall in Judo (유도 공중회전낙법의 COG변인 분석)

  • Kim, Eui-Hwan;Chung, Chae-Wook;Kim, Sung-Sup
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.117-132
    • /
    • 2005
  • It was to study a following research of "A Kinematic Analysis of Air-rolling-breakfall in Judo". The purpose of this study was to analyze the Center of Gravity(COG) variables when performing Air-rolling-breakfall motion, while passing forward over(PFO) to the vertical-hurdles(2m height, take off board 1m height) in judo. Subjects were four males of Y. University squad, who were trainees of the demonstration exhibition team, representatives of national level judoists and were filmed by four 5-VHS 16mm video cameras(60field/sec.) through the three dimensional film analysis methods.COG variable were anterior-posterior directional COG and linear velocity of COG, vertical directional COG and linear velocity of COG. The data collections of this study were digitized by KWON3D program computed The data were standardized using cubic spline interpolation based by calculating the mean values and the standard deviation calculated for each variables. When performing the Air-rolling-breakfall, from the data analysis and discussions, the conclusions were as follows : 1. Anterior-posterior directional COG(APD-COG) when performing Air-rolling-breakfall motion, while PFO over to the vertical-hurdles(2m height) in judo. The range of APD-COG by forward was $0.31{\sim}0.41m$ in take-off position(event 1), $1.20{\sim}1.33m$ in the air-top position(event 2), $2.12{\sim}2.30m$ in the touch-down position(event 3), gradually and $2.14{\sim}2.32m$ in safety breakfall position(event 4), respectively. 2 The linear velocity of APD-COG was $1.03{\sim}2.14m/sec$. in take-off position(event 1), $1.97{\sim}2.22m/sec$. gradually in the air-top position(event 2), $1.05{\sim}1.32m/sec$. in the touch-down position (event 3), gradual decrease and $0.91{\sim}1.23m/sec$. in the safety breakfall position(event 4), respectively. 3. The vertical directional COG(VD-COG) when performing Air-rolling-breakfall motion, while PFO to the vertical-hurdles(2m height) in judo. The range of VD-COG toward upward from mat was $1.35{\sim}1.46m$ in take-off position(event 1), the highest $2.07{\sim}2.23m$ in the air-top position(event 2), and after rapid decrease $0.3{\sim}0.58m$ in the touch-down position(event 3), gradual decrease $0.22{\sim}0.50m$ in safety breakfall position(event 4), respectively. 4. The linear velocity of VlJ.COG was $1.60{\sim}1.87m/sec$. in take-off position(event 1), $0.03{\sim}0.08m/sec$. gradually in the air-top position(event 2), $-4.37{\sim}\;-4.76m/sec$. gradual decrease in the touch-down position(event 3), gradual decrease and -4.40${\sim}\;-4.77m/sec$. in safety breakfall position(event 4), respectively. When performing Air-rolling-breakfall showed parabolic movement from take-off position to air-top position, and after showed vertical fall movement from air-top position to safety breakfall. In conclusion, Ukemi(breakfall) is safety fall method Therefore, actions need for performing safety fall movement, that decrease and minimize shock and impact during Air-rolling-breakfall from take-off board action to air-top position must be maximize of angular momentum, and after must be minimize in touch-down position and safety breakfall position.

Evaluation of Setup Usefulness of CBCT using Rando Phantom (인체 팬텀(Rando Phantom)을 이용한 CBCT의 Setup 유용성 평가)

  • Jang, Eun-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.234-238
    • /
    • 2011
  • This paper will evaluate the usefulness of 3D target of CBCT by comparing human body's posture and position when simulated treatment is being carried out as well as human phantom posture and position using CBCT which is applying OBI. From the Rando Phantom which is located in the datum point moved in parallel and rotationary direction using CBCT. Then the mean and standard deviation difference on images location difference that are acquired were compared with real the Rando Phantom' moved distance. To make a plan of simulated treatment with the same procedure of real radiation therapy, we are going to setup the Rando Phantom. With an assumption that the position is set in accurate place, we measured the setup errors accroding to the change of the translation and rotation. Tests are repeated 10 times to get the standard deviation of the error values. The variability in couch shift after positioning equivalent to average residual error showed lateral $0.2{\pm}0.2$mm, longitudinal $0.4{\pm}0.3$mm, vertical $-0.4{\pm}0.1$mm. The average rotation erroes target localization after simulated $0.4{\pm}0.2$ mm, $0.3{\pm}0.3$ mm, and $0.3{\pm}0.4$ mm. The detection error by rotation is $0{\sim}0.6^{\circ}$ CBCT 3D/3D matching using the Rando Phantom minimized the errors by realizing accurate matching during simulated treatment and patient caring.

Displacement Control of Pneumatic Actuator Equipped with PLC and Proximity Sensors (PLC와 근접센서를 이용한 공압 실린더의 변위제어)

  • Kim, Gun-Hoi;So, Jung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.90-96
    • /
    • 2008
  • A pneumatic system was proposed to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the proposed valve system. The proposed pneumatic system consisted of a combination of pneumatic valves, two proximity sensors, and a programmable logic controller(PLC). The position controller is based on the PLC controller connected with the proximity sensors. Displacement accuracy of the pneumatic cylinder stroke was tested by varying air pressures of the supply and discharge-side and strokes of the pneumatic cylinder. The displacement accuracy of the pneumatic cylinder stroke increased as the supply and discharge side of air pressure increased at the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with a fixed supply and discharge side of air pressure of the pneumatic cylinder as 3.5 and $4.5kg/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder(i.e., standard deviation of 0.01 mm) was obtained at the supply and discharge side of air pressure of 4.0 and $5.0kg/cm^2$, respectively, and strokes of 170 and 190 mm among arbitrarily selected supply and discharge side air pressures and strokes.