• Title/Summary/Keyword: development scenarios

Search Result 1,062, Processing Time 0.027 seconds

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.

A Integrated Model of Land/Transportation System

  • 이상용
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.12a
    • /
    • pp.45-73
    • /
    • 1995
  • The current paper presents a system dynamics model which can generate the land use anq transportation system performance simultaneously is proposed. The model system consists of 7 submodels (population, migration of population, household, job growth-employment-land availability, housing development, travel demand, and traffic congestion level), and each of them is designed based on the causality functions and feedback loop structure between a large number of physical, socio-economic, and policy variables. The important advantages of the system dynamics model are as follows. First, the model can address the complex interactions between land use and transportation system performance dynamically. Therefore, it can be an effective tool for evaluating the time-by-time effect of a policy over time horizons. Secondly, the system dynamics model is not relied on the assumption of equilibrium state of urban systems as in conventional models since it determines the state of model components directly through dynamic system simulation. Thirdly, the system dynamics model is very flexible in reflecting new features, such as a policy, a new phenomenon which has not existed in the past, a special event, or a useful concept from other methodology, since it consists of a lots of separated equations. In Chapter I, II, and III, overall approach and structure of the model system are discussed with causal-loop diagrams and major equations. In Chapter V _, the performance of the developed model is applied to the analysis of the impact of highway capacity expansion on land use for the area of Montgomery County, MD. The year-by-year impacts of highway capacity expansion on congestion level and land use are analyzed with some possible scenarios for the highway capacity expansion. This is a first comprehensive attempt to use dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions. The model structure is not very elaborate mainly due to the problem of the availability of behavioral data, but the model performance results indicate that the proposed approach can be a promising one in dealing comprehensively with complicated urban land use/transportation system.

  • PDF

The Effects of LBS Information Filtering on Users' Perceived Uncertainty and Information Search Behavior (위치기반 서비스를 통한 정보 필터링이 사용자의 불확실성과 정보탐색 행동에 미치는 영향)

  • Zhai, Xiaolin;Im, Il
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.493-513
    • /
    • 2014
  • With the development of related technologies, Location-Based Services (LBS) are growing fast and being used in many ways. Past LBS studies have focused on adoption of LBS because of the fact that LBS users have privacy concerns regarding revealing their location information. Meanwhile, the number of LBS users and revenues from LBS are growing rapidly because users can get some benefits by revealing their location information. Little research has been done on how LBS affects consumers' information search behavior in product purchase. The purpose of this paper is examining the effect of LBS information filtering on buyers' uncertainty and their information search behavior. When consumers purchase a product, they try to reduce uncertainty by searching information. Generally, there are two types of uncertainties - knowledge uncertainty and choice uncertainty. Knowledge uncertainty refers to the lack of information on what kinds of alternatives are available in the market and/or their important attributes. Therefore, consumers having knowledge uncertainty will have difficulties in identifying what alternatives exist in the market to fulfil their needs. Choice uncertainty refers to the lack of information about consumers' own preferences and which alternative will fit in their needs. Therefore, consumers with choice uncertainty have difficulties selecting best product among available alternatives.. According to economics of information theory, consumers narrow the scope of information search when knowledge uncertainty is high. It is because consumers' information search cost is high when their knowledge uncertainty is high. If people do not know available alternatives and their attributes, it takes time and cognitive efforts for them to acquire information about available alternatives. Therefore, they will reduce search breadth. For people with high knowledge uncertainty, the information about products and their attributes is new and of high value for them. Therefore, they will conduct searches more in-depth because they have incentive to acquire more information. When people have high choice uncertainty, people tend to search information about more alternatives. It is because increased search breadth will improve their chances to find better alternative for them. On the other hand, since human's cognitive capacity is limited, the increased search breadth (more alternatives) will reduce the depth of information search for each alternative. Consumers with high choice uncertainty will spend less time and effort for each alternative because considering more alternatives will increase their utility. LBS provides users with the capability to screen alternatives based on the distance from them, which reduces information search costs. Therefore, it is expected that LBS will help users consider more alternatives even when they have high knowledge uncertainty. LBS provides distance information, which helps users choose alternatives appropriate for them. Therefore, users will perceive lower choice uncertainty when they use LBS. In order to test the hypotheses, we selected 80 students and assigned them to one of the two experiment groups. One group was asked to use LBS to search surrounding restaurants and the other group was asked to not use LBS to search nearby restaurants. The experimental tasks and measures items were validated in a pilot experiment. The final measurement items are shown in Appendix A. Each subject was asked to read one of the two scenarios - with or without LBS - and use a smartphone application to pick a restaurant. All behaviors on smartphone were recorded using a recording application. Search breadth was measured by the number of restaurants clicked by each subject. Search depths was measured by two metrics - the average number of sub-level pages each subject visited and the average time spent on each restaurant. The hypotheses were tested using SPSS and PLS. The results show that knowledge uncertainty reduces search breadth (H1a). However, there was no significant correlation between knowledge uncertainty and search depth (H1b). Choice uncertainty significantly reduces search depth (H2b), but no significant relationship was found between choice uncertainty and search breadth (H2a). LBS information filtering significantly reduces the buyers' choice uncertainty (H4) and reduces the negative relationship between knowledge uncertainty and search breadth (H3). This research provides some important implications for service providers. Service providers should use different strategies based on their service properties. For those service providers who are not well-known to consumers (high knowledge uncertainty) should encourage their customers to use LBS. This is because LBS would increase buyers' consideration sets when the knowledge uncertainty is high. Therefore, less known services have chances to be included in consumers' consideration sets with LBS. On the other hand, LBS information filtering decrease choice uncertainty and the near service providers are more likely to be selected than without LBS. Hence, service providers should analyze geographically approximate competitors' strength and try to reduce the gap so that they can have chances to be included in the consideration set.

Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case (KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템)

  • Choi, Jaewon;Sohn, Bongjin;Lim, Hyuna
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Big data refers to data that is difficult to store, manage, and analyze by existing software. As the lifestyle changes of consumers increase the size and types of needs that consumers desire, they are investing a lot of time and money to understand the needs of consumers. Companies in various industries utilize Big Data to improve their products and services to meet their needs, analyze unstructured data, and respond to real-time responses to products and services. The financial industry operates a decision support system that uses financial data to develop financial products and manage customer risks. The use of big data by financial institutions can effectively create added value of the value chain, and it is possible to develop a more advanced customer relationship management strategy. Financial institutions can utilize the purchase data and unstructured data generated by the credit card, and it becomes possible to confirm and satisfy the customer's desire. CRM has a granular process that can be measured in real time as it grows with information knowledge systems. With the development of information service and CRM, the platform has change and it has become possible to meet consumer needs in various environments. Recently, as the needs of consumers have diversified, more companies are providing systematic marketing services using data mining and advanced CRM (Customer Relationship Management) techniques. KB Kookmin Card, which started as a credit card business in 1980, introduced early stabilization of processes and computer systems, and actively participated in introducing new technologies and systems. In 2011, the bank and credit card companies separated, leading the 'Hye-dam Card' and 'One Card' markets, which were deviated from the existing concept. In 2017, the total use of domestic credit cards and check cards grew by 5.6% year-on-year to 886 trillion won. In 2018, we received a long-term rating of AA + as a result of our credit card evaluation. We confirmed that our credit rating was at the top of the list through effective marketing strategies and services. At present, Kookmin Card emphasizes strategies to meet the individual needs of customers and to maximize the lifetime value of consumers by utilizing payment data of customers. KB Kookmin Card combines internal and external big data and conducts marketing in real time or builds a system for monitoring. KB Kookmin Card has built a marketing system that detects realtime behavior using big data such as visiting the homepage and purchasing history by using the customer card information. It is designed to enable customers to capture action events in real time and execute marketing by utilizing the stores, locations, amounts, usage pattern, etc. of the card transactions. We have created more than 280 different scenarios based on the customer's life cycle and are conducting marketing plans to accommodate various customer groups in real time. We operate a smart offering system, which is a highly efficient marketing management system that detects customers' card usage, customer behavior, and location information in real time, and provides further refinement services by combining with various apps. This study aims to identify the traditional CRM to the current CRM strategy through the process of changing the CRM strategy. Finally, I will confirm the current CRM strategy through KB Kookmin card's big data utilization strategy and marketing activities and propose a marketing plan for KB Kookmin card's future CRM strategy. KB Kookmin Card should invest in securing ICT technology and human resources, which are becoming more sophisticated for the success and continuous growth of smart offering system. It is necessary to establish a strategy for securing profit from a long-term perspective and systematically proceed. Especially, in the current situation where privacy violation and personal information leakage issues are being addressed, efforts should be made to induce customers' recognition of marketing using customer information and to form corporate image emphasizing security.

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

Development of a smart cane concept for guiding the visually impaired - focused on design thinking learning practices for students - (시각장애인을 위한 길 안내용 스마트 지팡이 콘셉트 개발)

  • Park, Hae Rim;Lee, Min Sun;Yang, Ho Jung
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.186-200
    • /
    • 2023
  • This study aims to improve the usability of the white cane, which is walking equipment that most local visually impaired people use and carry when going out, and to contribute to the prevention of safety accidents and the walking rights of visually impaired people by providing improvement and resolution measures for the problems identified. Also, this study is a study on the visually impaired, primarily targeting the 1st to 2nd degree visually impaired people, who cannot go out on their own without walking equipment such as a white cane, corresponding to 20% among approximately 250,000 blind and low vision people in the Korean population. In the study process, the concept has been developed from the user's point of view in order that the white cane becomes a real help in the walking step of the visually impaired and the improvement of usability of the white cane, the main walking equipment for the visually impaired, are done by problem identification through the Double Diamond Model of Design Thinking (Empathize → Define → Ideate → Prototype → Test (verify)). As a result of the investigation in the process of Empathy, a total of five issues was synthesized, including an increase in the proportion of the visually impaired people, an insufficient workforce situation to help all the visually impaired, an improvement and advancement of assistive devices essential for the visually impaired, problems of damage, illegal occupation, demolition, maintenance about braille blocks, making braille block paradigms for the visually impaired and for everyone. In Ideate and Prototype steps, situations derived from brainstorming were grouped and the relationship were made through the KJ method, and specific situations and major causes were organized to establish the direction of the concept. The derived solutions and major functions are defined in four categories, and representative situations requiring solutions and major functions are organized into two user scenarios. Ideas were visualized by arranging the virtual Persona and Customer Journey Map according to the situation and producing a prototype through 3D modeling. Finally, in the evaluation, the final concept derived is a device such a smart cane for guidance for the visually impaired as ① a smart cane emphasizing portability + ② compatibility with other electronic devices + ③ a product with safety and convenience.

Analyzing the Performance of the South Korean Men's National Football Team Using Social Network Analysis: Focusing on the Manager Bento's Matches (사회연결망분석을 활용한 한국 남자축구대표팀 경기성과 분석: 벤투 감독 경기를 중심으로)

  • Yeonsik Jung;Eunkyung Kang;Sung-Byung Yang
    • Knowledge Management Research
    • /
    • v.24 no.2
    • /
    • pp.241-262
    • /
    • 2023
  • The phenomena and game records that occur in sports matches are being analyzed in the field of sports game analysis, utilizing advanced technologies and various scientific analysis methods. Among these methods, social network analysis is actively employed in analyzing pass networks. As football is a representative sport in which the game unfolds through player interactions, efforts are being made to provide new insights into the game using social network analysis, which were previously unattainable. Consequently, this study aims to analyze the changes in pass networks over time for a specific football team and compare them in different scenarios, including variations in the game's nature (Qatar World Cup games vs. A match games) and alterations in the opposing team (higher FIFA rankers vs. lower FIFA rankers). To elaborate, we selected ten matches from the games of the Korean national football team following Coach Bento's appointment, extracted network indicators for these matches, and applied four indicators (efficiency, cohesion, vulnerability, and activity/leadership) from a football team's performance evaluation model to the extracted data for analysis under different circumstances. The research findings revealed a significant increase in cohesion and a substantial decrease in vulnerability during the analysis of game performance over time. In the comparative analysis based on changes in the game's nature, Qatar World Cup matches exhibited superior performance across all aspects of the evaluation model compared to A matches. Lastly, in the comparative analysis considering the variations in the opposing team, matches against lower FIFA rankers displayed superior performance in all aspects of the evaluation model in comparison to matches against top FIFA rankers. We hope that the outcomes of this study can serve as essential foundational data for the selection of football team coaches and the development of game strategies, thereby contributing to the enhancement of the team's performance.

Evaluation of K-Cabbage Model for Yield Prediction of Chinese Cabbage in Highland Areas (고랭지 배추 생산 예측을 위한 K-배추 모델 평가)

  • Seong Eun Lee;Hyun Hee Han;Kyung Hwan Moon;Dae Hyun Kim;Byung-Hyuk Kim;Sang Gyu Lee;Hee Ju Lee;Suhyun Ryu;Hyerim Lee;Joon Yong Shim;Yong Soon Shin;Mun Il Ahn;Hee Ae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.398-403
    • /
    • 2023
  • Process-based K-cabbage model is based on physiological processes such as photosynthesis and phenology, making it possible to predict crop growth under different climate conditions that have never been experienced before. Current first-stage process-based models can be used to assess climate impact through yield prediction based on climate change scenarios, but no comparison has been performed between big data obtained from the main production area and model prediction so far. The aim of this study was to find out the direction of model improvement when using the current model for yield prediction. For this purpose, model performance evaluation was conducted based on data collected from farmers growing 'Chungwang' cabbage in Taebaek and Samcheok, the main producing areas of Chinese cabbage in highland region. The farms surveyed in this study had different cultivation methods in terms of planting date and soil water and nutrient management. The results showed that the potential biomass estimated using the K-cabbage model exceeded the observed values in all cases. Although predictions and observations at the time of harvest did not show a complete positive correlation due to limitations caused by the use of fresh weight in the model evaluation process (R2=0.74, RMSE=866.4), when fitting the model based on the values 2 weeks before harvest, the growth suitability index was different for each farm. These results are suggested to be due to differences in soil properties and management practices between farms. Therefore, to predict attainable yields taking into account differences in soil and management practices between farms, it is necessary to integrate dynamic soil nutrient and moisture modules into crop models, rather than using arbitrary growth suitability indices in current K-cabbage model.

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF

Habitat characteristics and prediction of potential distribution according to climate change for Macromia daimoji Okumura, 1949 (Odonata: Macromiidae) (노란잔산잠자리(Macromia daimojiOkumura, 1949)의 서식지 특성 및 기후변화에 따른 잠재적 분포 예측)

  • Soon Jik Kwon;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim;Jae Heung Park;Yung Chul Jun
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • Macromia daimoji Okumura, 1949 was designated as an endangered species and also categorized as Class II Endangered wildlife on the International Union for Conservation of Nature (IUCN) Red List in Korea. The spatial distribution of this species ranged within a region delimited by northern latitude from Sacheon-si(35.1°) to Yeoncheon-gun(38.0°) and eastern longitude from Yeoncheon-gun(126.8°) to Yangsan-si(128.9°). They generally prefer microhabitats such as slowly flowing littoral zones of streams, alluvial stream islands and temporarily formed puddles in the sand-based lowland streams. The objectives of this study were to analyze the similarity of benthic macroinvertebrate communities in M. daimoji habitats, to predict the current potential distribution patterns as well as the changes of distribution ranges under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from April 2009 to September 2022. We adopted MaxEnt model to predict the current and future potential distribution for M. daimoji using downloaded 19 variables from the WorldClim database. The differences of benthic macroinvertebrate assemblages in the mainstream of Nakdonggang were smaller than those in its tributaries and the other streams, based on the surrounding environments and stream sizes. MaxEnt model presented that potential distribution displayed high inhabiting probability in Nakdonggang and its tributaries. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), SSP1 scenario was predicted to expand in a wide area and SSP5 scenario in a narrow area, comparing with current potential distribution. M. daimoji is not only directly threatened by physical disturbances (e.g. river development activities) but also vulnerable to rapidly changing climate circumstances. Therefore, it is necessary to monitor the habitat environments and establish conservation strategies for preserving population of M. daimoji.