• Title/Summary/Keyword: development flight test

Search Result 480, Processing Time 0.034 seconds

Dynamic Analysis of a Flow Passage Opening Device in Flight Profile of a High-speed Vehicle (고속 비행체의 비행궤적별 유로개방장치 동역학 해석)

  • Jung, Sungmin;Park, Jeong-Bae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.98-103
    • /
    • 2015
  • A flow passage opening device utilizing an acceleration follow-up technique allows fuel to flow continuously through a pressurized fuel tank system. It is very difficult to test the device in a real flight situation because of severe test condition and a cost problem. In this paper, therefore, the results of a basic negative g test conducted by low-speed airplane are compared with RecurDyn simulation. Dynamic behavior of the device in total flight profile of a high-speed vehicle is also analyzed by using RecurDyn to predict its performance.

Prototype Kite Development for Wind Power Generation (고공풍력 발전용 시제품 Kite 비행체 개발)

  • Kwon, Jae-Wook;Kim, Jong-Chul;Moon, Sang-Man;Choi, Ji-Ung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.259-260
    • /
    • 2012
  • With increasing interest in alternative energy source for green growth, this document shows that the study of kite flight control is based on the concept of autonomous flight of kite can exploit the energy. Currently, prototype kite was designed and the purpose of its flight test, by manual flight control with Remote Controller, was performed for the feasibility of the full automatic flight control. For the future research, the test data should be collected through the many flight test under various environment.

  • PDF

The signal processing algorithm of the Missile Flight Test Launch Control System (비행시험 발사통제 시스템의 신호처리 알고리즘)

  • Oh, Jino
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1965-1972
    • /
    • 2015
  • The Missile Flight Test Launch Control System is to operate in conjunction with the Fire Control System during flight test to guided weapons. Also, this is a system for the test control and situation monitoring depending on the type of guided weapons and testing purposes. Message structure, communication protocols, such as data types for interworking with the fire control system and the Missile Flight Test Launch Control System are defined in the Launch Control ICD(Interface Control Document). ICD are composed differently of each guided weapons system and each test object. Previously, in order to interwork with the Fire Control System, the interlocking software was developed, which had a variety of problems. Therefore, we developed a new parsing algorithm in order to recognize the variety of Launch Control ICD and verified that the algorithm operates normally by checking transmitting and receiving various message in conjunction with the fire control system.

Development of FAA AC120-63 Level C Flight Simulation Model for KA-32T (FAA AC120-63 Level C급 KA-32T 비행 시뮬레이션 모델 개발)

  • Jeon, Dae-Keun;Jun, Hyang-Sig;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.406-412
    • /
    • 2009
  • Flight simulation model for helicopter simulator is one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the helicopter designers/manufacturers. The approaches in this study were to develop the basic model based on the available resources regarding helicopter operation/maintenance and to tune and validate it based on the flight test results. The basic model was developed with maintenance manuals, flight manuals, analyses, measurements, papers and so on considering that KA-32T data could not be obtained from the manufacturer. The flight test for KA-32T was performed and the reference data for the simulation validation tests were acquired. The flight simulation model was validated to have the fidelity compatible with level C of FAA AC120-63 after comparison and tuning with flight test results.

Flight Test of Hybrid Propulsion System for Electrically Powered UAV (전기동력 무인기용 하이브리드 추진시스템 비행시험)

  • Park, Poomin;Kim, Keunbae;Cha, Bongjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2013
  • This paper deals with the flight test of propulsion system of middle size electrically powered UAV (EAV2, Electric Aerial Vehicle 2) which is under development in KARI. EAV2 is low speed endurance type UAV whose wing span is 6.9 m, and weight is 18 kg. The UAV has flown for 22 hours in June of 2012. The flight test result showed that the propulsion system worked well suppling power for any circumstances during the test flight. Each power source worked according to the design purpose.

A Study on the Flight Safety Analysis of Military Aircraft External Stores (군용 항공기 외장물의 비행 안전성 분석에 관한 연구)

  • Hyeonsoo Kim;Minsu Kim;Byungjoon Shin;Younghee Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.83-90
    • /
    • 2023
  • The external store fitted to the aircraft may affect the flight characteristics and flight safety of the aircraft, which requires the analyses and testing on it. The purpose of this study is to identify and analyze types of failures that can affect the flight safety of aircraft due to the installation of external stores, and to check the flight safety of aircraft through dropping tests of the external stores. After identifying the types of failures that could affect the flight safety of the aircraft, the criticality was calculated to analyze the effect on the flight safety of the aircraft. Four types of failures were selected: unintentional dropping, failure of dropping, unintentional main wing deployment, and release of tail wing restraint of the external store, which are considered to affect the flight safety of the aircraft due to the operation of the external store. As a result of the aircraft's flight safety analysis on the failure types, the criticality requirements were met. Based on this, after obtaining the airworthiness certification, the drop test was successfully performed to confirm the flight safety of the aircraft by mounting an external store on the aircraft. However, in addition to the four hazards carried out in this study, the real external stores of the military aircraft may have various factors affecting the flight safety of the aircraft, so further research will be needed.

A Way to Perform a Helicopter PFAT by KUH Case Study (KUH 사례를 통한 헬기 비행전 수락시험 수행 방안)

  • Lee, Sangmok;Hwang, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.994-1001
    • /
    • 2013
  • Process of helicopter development is divided in design, manufacture and test & evaluation phase. Test & evaluation is performed step by step in order of component test, rig test, system ground test and flight test. After completing ground test and before first flight, US military specification requires 50hrs-PFAT in order to assure flight safety. PFAT is the test which requires tie-down and severe load imposition and it needs special ground test vehicle which is similar to helicopter prototype as well as much cost and period. In case of KUH, we have performed tailored PFAT considering KUH development environment. In this paper, we propose a proper way to perform the PFAT in accordance with development environment by giving KHU PFAT procedure and result.

Design of Decentralized Guidance Algorithm for Swarm Flight of Fixed-Wing Unmanned Aerial Vehicles (고정익 소형무인기 군집비행을 위한 분산형 유도 알고리듬 설계)

  • Jeong, Junho;Myung, Hyunsam;Kim, Dowan;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.981-988
    • /
    • 2021
  • This paper presents a decentralized guidance algorithm for swarm flight of fixed-wing UAVs (Unmanned Aerial Vehicles). Considering swarm flight missions, we assume four representative swarm tasks: gathering, loitering, waypoint/path following, and individual task. Those tasks require several distinct maneuvers such as path following, flocking, and collision avoidance. In order to deal with the required maneuvers, this paper proposes an integrated guidance algorithm based on vector field, augmented Cucker-Smale model, and potential field methods. Integrated guidance command is synthesized with heuristic weights designed for each guidance method. The proposed algorithm is verified through flight tests using up to 19 small fixed-wing UAVs.

A Development of Instrumentation Radar Tracking Status Simulator (계측레이더 추적 시뮬레이터 개발)

  • Ye, Sung-Hyuck;Ryu, Chung-Ho;Hwang, Gyu-Hwan;Seo, Il-Hwan;Kim, Hyung-Sup
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.405-413
    • /
    • 2011
  • Defense Systems Test Center in ADD supports increasingly various missile test requirements such as higher altitude event, multi target operation and low-altitude, high velocity target tracking. In this paper, we have proposed the development of instrumentation radar tracking status simulator based on virtual reality. This simulator can predict the tracking status and risk of failure using several modeling algorithms. It consists of target model, radar model, environment model and several algorithms includes the multipath interference effects. Simulation results show that the predict tracking status and signal are similar to the test results of the live flight test. This simulator predicts and analyze all of the status and critical parameters such as the optimal site location, servo response, optimal flight trajectory, LOS(Line of Sight). This simulator provides the mission plan with a powerful M&S tool to rehearse and analyze instrumentation tracking radar measurement plan for live flight test at DSTC(Defense Systems Test Center).

Real-time PCM Data Processing System Development for Flight Test Control (비행시험통제용 실시간 PCM 자료처리시스템 개발)

  • Park, In Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.825-833
    • /
    • 2021
  • In flight tests, aircraft moves in real time, so it is important that data from instrumentation/measurement equipment used to determine aircraft status are processed in necessary form and transmitted to flight control systems in real time. Therefore, through telemetry data processing time reduction and processing cycle improvement in flight test control computer data processing system, in order to provide faster slave-data and safety judgment information to radar/telemetry slave-data processing, flight safety analysis system, emergency destruction transmission system, etc., we developed a PCM processing system that can be operated independently by installing data processing software that can receive and process PCM data in current telemetry data processing system and radar information at the same time. In this paper, we explain classified software functions in detail, starting with overall structure of PCM data processing systems developed by supplementing existing systems. Additionally, PCM data processing system will be supplemented through system stabilization and test operation.