• Title/Summary/Keyword: developed length

Search Result 3,914, Processing Time 0.029 seconds

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Flexural Test for a Monolithic Holed Web Prestressed Concrete (HWPC) Girder

  • Han, Man-Yop;Jin, Kyung-Suk;Choi, Sok-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Prestressed concrete (PSC) I-type girders have been used for span length around up to 40 m in domestic region. PSC girders are very cost effective girder type and extending their lengths more than 50 m will bring large benefit in cost. A new design method was proposed by combining two notable design concept in order to extend the applicable span length in this study. First of all, several numbers of openings was introduced in the girder web, and half of the anchorage devices were moved into the openings. In this way, large compressive stress developed at end zone was reduced, and the portion of design load coming from self-weight was reduced as well. Secondly, prestressing force was introduced in the girder not once at the initial stage, but through multiple loading stages. A full scale girder with the length of 50 m with the girder depth of 2 m was fabricated, and a flexural test was conducted in order to verify the performance of newly developed girder. Test results showed that the new holed web design concept can provide a way to design girders longer than 50 meters with the girder height of 2 m.

Analysis of Tidal Flow Using the Frequency Domain Finite Element Method (I) (유한요소법을 이용한 해수유동 해석 (I))

  • 권순국;고덕구;조국광;김준현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.73-83
    • /
    • 1991
  • A numerical simulation of a 2-dimensional tidal flow in a shallow sea was performed using the frequency domain finite element method. In this study, to overcome the inherent problems of a time domain model which requires high eddy viscosity and small time steps to insure numerical stability, the harmonic function incorporated with the linearized function of governing equations was applied. Calculations were carried out using the developed tidal model(TIDE) in a rectangular channel of lOm(depth) X 4km (width) X 25km(length) under the condition of tidal waves entering the channel closed at one end for both with and without bottom friction damping. The predicted velocities and water levels at different points of the channel were in close agreement with less than 1 % error between the numerical and analytical solutions. The results showed that the characteristics of the tidal flow were greatly affected by the magnitude of tidal elevation forcing, and not by on surface friction, wind, or the linear bottom friction when the value was less than 0.01. For the optimum size of grid to obtain a consistent solution, the ratio between the length of the maximum grid and the tidal wave length should be less than 0.0018. It was concluded that the finite element tidal model(TIDE) developed in this study could handle the numerical simulation of tidal flows for more complex geometrical conditions.

  • PDF

Reinforcing Efficiency of Micro-Pile with Precast Retaining Wall (프리캐스트 옹벽 마이크로 파일의 보강 효율)

  • Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.61-71
    • /
    • 2008
  • This study investigates the lateral resistance of micro-pile system when surcharge load is acting on the back of retaining wall. Both laboratory experiments and numerical analysis were performed. The experimental retaining wall model was developed on the laboratory-sized foundation. While surcharge load was acting, the interval and length varied as experimental variables. From the investigation it is known that the micro-pile system can effectively control the lateral displacement which is developed on the precast retaining wall. The effectiveness became increased as the pile interval reduced and the length of pile increased. The greatest reinforcing efficiency was shown when the pile length was 0.5H and the interval was 7D.

  • PDF

40nm InGaAs HEMT's with 65% Strained Channel Fabricated with Damage-Free $SiO_2/SiN_x$ Side-wall Gate Process

  • Kim, Dae-Hyun;Kim, Suk-Jin;Kim, Young-Ho;Kim, Sung-Wong;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • Highly reproducible side-wall process for the fabrication of the fine gate length as small as 40nm was developed. This process was utilized to fabricate 40nm InGaAs HEMTs with the 65% strained channel. With the usage of the dual $SiO_2$ and $SiN_x$ dielectric layers and the proper selection of the etching gas, the final gate length (Lg) was insensitive to the process conditions such as the dielectric over-etching time. From the microwave measurement up to 40GHz, extrapolated fT and fmax as high as 371 and 345 GHz were obtained, respectively. We believe that the developed side-wall process would be directly applicable to finer gate fabrication, if the initial line length is lessened below the l00nm range.

The Prediction of Side Thrust Generated by Grousers Under Track (그라우저에 의해 발생되는 궤도의 측면추진력 예측)

  • 박원엽;이규승;박준걸
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This study was conducted to develop the mathmatical model for predicting the side thrust which is generated by the shearing action on the vertical surfaces of the sides of the track. Experiments were conducted with the three different shear plates with grouser length of 1, 3 and 5 cm for two different soil condition using soil bin system. The measured side thrust were compared with the values predicted by the new model developed in this study and by Bekker's model respectively. The values of side thrust predicted by the new model were more close to the measured values than those of the side thrust predicted by Bekker's model . The total thrust measured were also compared with the values predicted by the conventional model which considers only bottom thrust effect and by the new model which contains not only bottom thurst but side thrust effect. The values of the thrust predicted by conventional modelwere lower than measured values for both of the soil conditions and the three levels of grouser length. The maximum errors of conventional model were increased with the increase of grouser length. but the values of the total thrust predicted by the model developed in this study were well matched to the measured ones for both of the soil conditions and the three levels of grouser lengths.

  • PDF

A Study of Pattern Making by Computer -for women's stacks pattern- (컴퓨터에 의한 의복원형제도의 기초연구(II)-부인복 슬랙스 원형-)

  • Nam Yoon Ja;Lee Soon Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.2 s.24
    • /
    • pp.23-36
    • /
    • 1987
  • The purpose of the suudy was to develop a computer program for pattern mating of women's pant's. Computerization of the pattern making process was expected to provide higher accuracy and efficiency in pattern mating. The VAX-11/750 Computer and the CALCOMP PLOTTER 965 were used in this study. The procedures of the study were as follows : 1. A slacks pattern was selected. 2. The co-ordinate points were indicated relative location of all necessary in draffing. Total sixty co-ordinate points were instituted from (AX(1), AY(1)) to (AX(24), AY(24)), from (BX(1), BY(1)) to (BX(36), BY(36)). 3. A program for drafting was developed. Refer to (Table 3). 4. The procedures of drading of standard size were accomplished by using same method. The program was developed to drafting pattern for women by putting indivisual body measurement. The body measurements for stacks pattern were as follows : slacks length. Croach length. Hip length. nip circumference. waist circumference.

  • PDF

Response Analysis of Buried Pipelines Considering Longitudinal Permanent Ground Deformation (종방향 영구지반변형에 의한 매설관로의 거동 특성 해석)

  • 김태욱
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.184-191
    • /
    • 2000
  • In this research, a numerical model is developed for analysis of buried pipelines considering longitudinal permanent ground deformation(PGD) due to liquefaction induced lateral spreading. Buried pipelines and surrounding soil are medeled as continuous pipelines using the beam elements and a series of elasto-plastic springs uniformly distributed along the pipelines, respectively. Idealized various PGD patte군 based on the observation of PGD are used as a loading configuration and the length of the lateral spread zone is considered as a loading parameter. Numerical results are verified with other research results and efficient applicability of developed procedure is shown. Analyses are performed by varying different parameters such as PGD pattern, pipe diameter and pipe thickness. Results show that response of buried pipelines are more affected by pipe thickness than pipe diameter. Finally, the critical length of the lateral spread zone and the critical magnitude of PGD which cause yielding, local buckling or tension failure are proposed for the steel pipe which are normally used in Korea.

  • PDF

Measurement of Geometrical Characteristics of Fruit by Image Processing System (화상처리(畵像處理) 시스템을 이용(利用)한 과일의 기하학적(幾何學的) 특성(特性) 측정(測定))

  • Noh, S.H.;Ryu, K.H.;Kim, Y.W.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-32
    • /
    • 1990
  • Geometrical characteristics of fruit including perimeter, projected area and length of minor and major axis were calculated by computer programs to be used in fruit sorting by image processing system. The results are summerized as follows. 1. A program calculating perimeter, projected area, and length of minor and major axis by edge detection and chain code was developed. 2. Geometrical characteristics of given figures were calculated to verify the program and the discrepancies from the measured values were about 5%. 3. Regression models for estimating volums of apples were developed and regression coefficients for each variety were found. 4. Abnormal apples could be recognized by comparing the ratio of minor axis to major axis and the standard value was proposed.

  • PDF

An Experimental Study on Velocity Profiles and Turbulence Intensity of Developing Turbulent Pulsating Flows in the Entrance Region of a Square Duct

  • Park, G.M.;Koh, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.235-242
    • /
    • 1993
  • The flow characteristics of developing turbulent pulsating flows are investigated experimentally in the entrance region of a square duct ($40mm{\times}40mm$ and 4,000mm). Mean velocity profiles, turbulence intensity and entrance length are measured by using a hot-wire anemometer system together with data acquisition and processing systems. It is found that the velocity waveforms are not changed in the fully developed flow region where that $x/Dh{\geq}40$. For turbulent pulsating flow, the turbulent components in the velocity waveforms increase as the dimensionless transverse position approaches the wall. Mean velocity profiles of the turbulent steady flows follow the one-seventh power law profile in the fully developed flow region. Turbulence intensity increases as the dimensionless transverse position increases from the center to the wall of the duct, and is slightly smaller in the accelerating phase than in the decelerating phase for the turbulent pulsating flows. The entrance length of the turbulent pulsating flow is about 40 times as large as the hydraulic diameter under the present experimental conditions.

  • PDF