• Title/Summary/Keyword: develop process

Search Result 7,813, Processing Time 0.034 seconds

Development and Application of Teaching Strategy Focused on Problem Solving Process in the 'Separation of Mixture' Unit of Third Grade Elementary School (초등학교 3학년 '혼합물의 분리' 단원에서 문제해결 과정을 강조한 수업 전략 개발 및 적용)

  • Lee, Shin Hyun;Choi, Sun-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The purpose of this study was to develop a teaching strategy focused on problem solving process and explore its effects on science creative problem solving ability, science process skills, science academic achievements and scientific attitudes of students after applying it. Teaching strategy focused on problem solving process employed brainstorming and PMI thinking strategies. The participants were the third grade students of both an experimental class(26 students) and a comparative class(25 students) at the S elementary school located in Goyang-City, Kyonggi Province. The developed strategy was applied to the experimental class for 9 periods of 'Separation of mixture' unit. The results of the tests on the science creative problem solving ability, the science process skills, scientific achievement and scientific attitude were statistically higher in the experimental class.

A DEVELOPMENT OF MATHEMATICAL MODELS FOR PREDICTION OF OPTIMAL WELD BEAD GEOMETRY FOR GMA WELDING (GMA 용접에 최적의 용접비드 형상을 예측하기 위한 수학적 모델 개발)

  • 김일수
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.118-127
    • /
    • 1997
  • With the trend towards welding automation and robotization, mathematical models for studying the influence of various variables on the weld bead geometry in gas metal arc (GMA) welding process are required. Partial penetration, single-pass bead-on-plate welds using the GMA welding process were fabricated in 12mm mild steel plates employed four different process variables. Experimental results has been designed to investigate the analytical and empirical formulae, and develop mathematical equations for understanding the relationship between process variables and weld bead geometry. The relationships can be usefully employed not only for open loop process control, but also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF

A Study of an Instrument Development to Measure of the Service Process (서비스 프로세스의 측정을 위한 도구 개발에 관한 연구)

  • Yim, Myung-Seong;Choi, Sung-Wook
    • Journal of Information Technology Services
    • /
    • v.9 no.1
    • /
    • pp.173-197
    • /
    • 2010
  • Though service is recognized as not only a new driver for economy growth but also a source for sustainable value creation, it has been misunderstood in the literatures because of traditional characteristics of service such as inseparability, heterogeneity, intangibility, and perishability. This perspective can be a cause of barrier to approach a service. The purpose of this study is to develop and validate an instrument to measure of the service process. A series of statistical procedures were used to analyze the data, which proved that the instrument is valid and reliable. This study makes a contribution to both academic research and management practice. Theoretically, this study provides a measurement of service process in organizations for identifying service process. In practice, the results of this study will help organizations evaluate their service process innovation.

A Study on Development of Algorithm for Predicting the Optimized Process Parameters on Bead Geometry (임의의 비드형상을 의한 최적의 공정변수 예측 알고리즘 개발에 관한 연구)

  • 김일수;차용훈;이연신;박창언;손준식
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.39-45
    • /
    • 1999
  • The procedure of robotic Gas metal Arc (GMA) welding in order to achieve the optimized bead geometry needs the selection of suitable process parameters such as arc current, welding voltage, welding speed. It is required the relationships between process parameters and bead geometry. The objective of this paper is to develop the algorithm that enables the determination of process parameters from the optimized bead geometry for robotic GMA welding. It depends on the inversion of empirical equations derived from multiple regression analysis of the relationships between the process parameters and the bead dimensions using the least square method. The method not only directly determines those parameters which will give the desired set of bead geometry, but also avoids the need to iterate with a succession of guesses employed Finite Element Method(FEM). These results suggest that process parameter from experimental equation for robotic GMA welding may be employed to monitor and control the bead geometry in real time.

  • PDF

An integrated process planning system through machine load using the genetic algorithm under NCPP (유전알고리즘을 적용한 NCPP기반의 기계선정 방법)

  • 최회련;김재관;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.612-615
    • /
    • 2002
  • The objective of this study is to develop an integrated process planning system which can flexibly cope with the status changes in a shop floor by utilizing the concept of Non-Linear and Closed-Loop Process Planning(NCPP). In this paper, Genetic Algorithm(GA) is employed in order to quickly generate feasible setup sequences for minimizing the makespan and tardiness under an NCPP. The genetic algorithm developed in this study for getting the machine load utilizes differentiated mutation rate and method in order to increase the chance to avoid a local optimum and to reach a global optimum. Also, it adopts a double gene structure for the sake of convenient modeling of the shop floor. The last step in this system is a simulation process which selects a proper process plan among alternative process plans.

  • PDF

An Accelerated Test Acceptance Control Chart for Process Quality Assurance (공정보증을 위한 가속시험 합격판정 관리도)

  • Kim Jong Gurl
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.123-134
    • /
    • 1999
  • There are several models for process quality assurance by quality system (ISO 9000), process capability analysis, acceptance control chart and so on. When a high level process capability has been achieved, it takes a long time to monitor the process shift, so it is sometimes necessary to develop a quicker monitoring system. To achieve a quicker quality assurance model for high-reliability process, this paper presents a model for process quality assurance when the fraction nonconforming is very small. We design an acceptance control chart based on variable quality characteristic and time-censored accelerated testing. The distribution of the characteristics is assumed to be normal or lognormal with a location parameter of the distribution that is a linear function of a stress. The design parameters are sample size, control limits and sample proportions allocated to low stress. These paramaters are obtained under minimization of the relative variance of the MLE of location parameter subject to APL and RPL constraints.

  • PDF

Review on Theoretical Background and Components of Dental Hygiene Process (치위생과정의 이론적 배경과 구성요소에 관한 고찰)

  • Lee, Su-Young;Cho, Young-Sik
    • Journal of dental hygiene science
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • The dental hygiene process of care is a model for providing integrated dental hygiene care. It was developed by Mueller-Joseph and Petersen in 1995. The purpose of the dental hygiene process is to provide a framework within which the individualized needs of the client can be met. This model enables the dental hygienist to focus on patient need. The process is composed of five components: assessment, diagnosis, planning, implementation and evaluation. The process of dental hygiene has to move from simple clinical procedure to comprehensive and systemic dental hygiene care. The dental hygiene diagnostic model broadens the biomedical dental model to the behavioral model to include health behavior and health function of individuals. The dental hygiene process will provide a mechanism to develop dental hygienist's role and scope of practice in Korea.

  • PDF

Numerical Analysis of Micro-pattern Filling with Gas Dissolution by Injection Molding Process (가스 용해를 고려한 금형내압제어 사출성형공정의 마이크로패턴 충전 해석)

  • Park, Sung Ho;Yoo, Hyeong Min;Lee, Woo Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.21-27
    • /
    • 2014
  • The injection molding process has several advantages enabling it to produce large quantities of molded plastic products using a repetitive process. In recent years, it has been necessary to develop an injection molding process with micro/nano-sized patterns for application to the semiconductor industry and to the bio/nano manufacturing industry. In this study, we apply gas pressure to the inside of a mold and consider the gas dissolution phenomenon for a resin filling into a micro pattern with a line structure. Using numerical analysis, we calculate the filling ratio with respect to time for various internal gas pressures and various aspect ratios of the micro-patterns.

Model for Process Quality Assurance When the Fraction Nonconforming is Very Small (극소불량 공정보증을 위한 모형연구)

  • Jong-Gurl Kim
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.247-257
    • /
    • 1999
  • There are several models for process quality assurance by quality system(ISO 9000), process capability analysis, acceptance control chart and so on. When a high level process capability has been achieved, it takes a long time to monitor the process shift, so it is sometimes necessary to develop a quicker monitoring system. To achieve a quicker quality assurance model for high-reliability process, this paper presents a model for process quality assurance when the fraction nonconforming is very small. We design an acceptance control chart based on variable quality characteristic and time-censored accelerated testing. The distribution of the characteristics is assumed to be normal of lognormal with a location parameter of the distribution that is a linear function of a stress. The design parameters are sample size, control limits and sample proportions allocated to low stress. These parameters are obtained under minimization of the relative variance of the MLE of location parameter subject to APL and RPL constraints.

  • PDF